K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Chọn C.

16 tháng 12 2018

ĐKXĐ : \(x\ne2\)

\(\frac{3x^2+6x+12}{x^3-8}\)

\(=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{3}{x-2}\)

27 tháng 6 2019

3x2+6x+12/x3-8

=3*(x^2+2x+4)/x^3-2^3

=3*(x^2+2x+4)/(x-2)*(x^2+2x+4)

=3/x-2

16 tháng 12 2018

\(x^{11}+x^7+1\)

\(=\left(x^{11}-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^9-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^6+x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^6+x^3+1\right)+x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^9+x^6+x^3-x^8-x^5-x^2+x^5+x^2-x^4-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)

16 tháng 12 2018

\(x^7+x^2+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^4+x\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5+x^2-x^4-x+1\right)\)

16 tháng 12 2018

Bài này khá khó .... Nên

Mik ko làm được !

Học tốt !

16 tháng 12 2018

\(\left(2x+1\right)^2-\left(4x-3\right).\left(x+7\right)-22\)

\(=4x^2+4x+1-4x^2-28x+3x+21-22\)

\(=-21x\)

mấy câu khác tương tự

16 tháng 12 2018

Áp suất của nước lên đáy thùng là \(p_1=d.h_1=10000.1,5=15000\left(N/m^2\right)\)

Áp suất của nước lên 1 điểm cách đáy thùng 0,4 m là: 

\(p_2=d.h_2=10000.\left(1,5-0,4\right)=11000\left(N/m^2\right)\)

16 tháng 12 2018

Bài 1 :

a) \(3x^2+4x-7\)

\(=3x^2-3x+7x-7\)

\(=3x\left(x-1\right)+7\left(x-1\right)\)

\(\left(x-1\right)\left(3x+7\right)\)

b) \(3x^2+48+24x-12y^2\)

\(=3\left(x^2+16+8x-4y^2\right)\)

\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)

\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)

16 tháng 12 2018

Bài 2 :

a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)

\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)

\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)

\(A=\frac{-4x-7}{x+2}\)

c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )

\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)