K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a) x2 + 2x + 2 

= ( x2 + 2x + 1 ) + 1

= ( x + 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

b) x2 - 6x + 10 

= ( x2 - 6x + 9 ) + 1

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) \(x^2+x+\frac{1}{4}\)

\(=x^2+2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2\ge0\forall x\)( Min là 0 nên chưa kết luận vội :)) )

16 tháng 8 2020

Để a28b chia hết cho 2,3,5,9 thì b phải bằng 0 để chia hết cho 2 và 5

Để a280 chia hết cho 9 thì a+2+8+0 chí hết cho 9

Mà 2+8+0=10 nên a phải bằng 8

Vaayh a=8, b=0 nên ta có số 8230

16 tháng 8 2020

Bg

Ta có: a28b \(⋮\)2; 3; 5; 9  (0 < b) (1 < a < 9)

Xét a28b \(⋮\)2 và 5 (chia hết cho 2 và 5 thì chữ số tận cùng là 0)

=> b = 0

Xét  a28b \(⋮\)3 và 9

Vì 9 \(⋮\)3

=> Chỉ cần a28b \(⋮\)9

=> a280 \(⋮\)9

=> a + 2 + 8 + 0 \(⋮\)9

=> a + 10 \(⋮\)9

Mà 1 < a < 9

=> a = 8

Vậy a = 8 và b = 0

chia hết cho 9 là 270;720

chia hết cho 3nhưng ko chia hết cho 9 là 273;732

chia hết cho 2 và 5 là 230;270

16 tháng 8 2020

Bg

a) Để số tự nhiên đó chia hết cho 9 thì các chữ số của số đó chia hết cho 9

Gọi số có ba chữ số đó abc  (abc \(\inℕ^∗\), a khác 0)

Ta có: 7 + 2 + 0 = 9 \(⋮\)9

=> 720, 702 \(⋮\)9

b) Chia hết cho 3 mà không chia hết cho 9 thì tổng các chữ số chia hết cho 3 mà không chia hết cho 9

Ta có: 7 + 2 + 3 = 12 chia hết cho 3 mà không chia hết cho 9

=> 723; 732; 273; 237; 327; 372 chia hết cho 3 mà không chia hết cho 9

c) Chia hết cho 2 và 5 thì chữ số tận cùng là 0

Ta có: 720; 730; 370; 320; 270; 230 có chữ số tận cùng là 0

=> 720; 730; 370; 320; 270; 230 chia hết cho 2 và 5

16 tháng 8 2020

bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản

ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1

ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)

\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)

\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)

do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)

\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)

dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)

\(\Leftrightarrow\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta có bảng : 

\(x+\sqrt{1+x^2}\)1-1
\(y+\sqrt{1+y^2}\)1-1
x0vô nghiệm 
y0vô nghiệm 

lỗi @@ đọc nhầm trên tưởng giải PT chưa có nhin  xuống \(\left(x+y\right)^2\)

Làm lại nhớ _-_  sai chịu, làm cái này kham khảo hơi nhìu, chill :v 

\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)

Ta có : \(\hept{\begin{cases}\left(x+\sqrt{1+x^2}\right)\left(\sqrt{x^2+1}-x\right)=1\\\left(y+\sqrt{y^2+1}\right)\left(\sqrt{y^2+1}-y\right)=1\end{cases}}\)

Kết hợp giả thiết \(x+\sqrt{1+x^2}=y+\sqrt{y^2+1}\)và 

\(\left(\sqrt{x^2+1}-x\right)=\left(\sqrt{y^2+1}-y\right)\)

Ta  có :  \(\hept{\begin{cases}\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+1}\end{cases}}\)

Cộng theo vế ta có : \(-x-y=x+y\Leftrightarrow\left(x+y\right)^2=0\)

16 tháng 8 2020

acâu a bạn cho 2 cái căn ở cuối làm j thế

hiệu bằng 0 rồi mà?

16 tháng 8 2020

A = (x+ căn x^2+2013).(y+ căn y^2+2013) =2013

=> (x+ căn x^2+2013) .(x- căn x^2+2013).(y+ căn y^2+2013) phần (x- căn x^2+2013) =2013

=> -2013 . (y+ căn y^2+2013) phần (x+ căn x^2+2013) = 2013

=> -y  - (y+ căn y^2+2013 ) = x - (x+ căn x^2+2013)   (1)

      -x  - (x+ căn x^2+2013) = y - (y+ căn y^2+2013)    (2)

tu (1) va (2) => x + y = 0

16 tháng 8 2020

sai đề :>>>

16 tháng 8 2020

Đặt \(\sqrt{x+3}=a\)  và \(\sqrt{x}=b\). ĐKXĐ : x >= 0.

Ta có: a + 2b = 2 + ab.

<=> a - ab + 2b - 2 = 0.

<=> -a.(b-1) + 2(b-1) = 0.

<=> (2 - a).(b - 1) = 0.

<=> a = 2 hoặc b = 1.

Suy ra \(\sqrt{x+3}=2\)hoặc \(\sqrt{x}=1\).

Từ đó, ta có thể tìm được 1 nghiệm duy nhất của phương trình là x = 1. (x=1 thoả mãn ĐKXĐ).