(x+4)(x-4)-(x-3)^2 thực hiện phép tính
mong mn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
652 + 2 x 75 x 25 + 35
= 4225 + (2 x 25) x 75 + 35
= 4225 + 50 x 75 + 35
= 4225 + 3750 + 35
= 7975 + 35
= 8010
A B C E D
Ta có
\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.9.12=54cm^2\)
Xét tg vuông DEC và tg vuông ABC có chung \(\widehat{C}\)
=> tg DEC đồng dạng tg ABC
\(\Rightarrow\dfrac{S_{DEC}}{S_{ABC}}=\dfrac{S_{DEC}}{54}=\left(\dfrac{CD}{AC}\right)^2=\dfrac{4}{12}=\dfrac{1}{3}\) (Hai tg đồng dạng thì tỷ số diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow S_{DEC}=\dfrac{54}{3}=18cm^2\)
`(2x - 5y)(2x + 5y)`
`= (2x)^2 - (5y)^2`
`= 4x^2 - 15y^2`
--------------------
`a^2 - b^2 = (a-b)(a+b)`
Với
`a = 2x`
`b = 5y`
`A = 3 (x + 1)^2 - (x + 3)^2`
`= 3 (x^2+ 2x + 1) - (x^2 + 6x + 9)`
`= 3x^2 + 6x + 3 - x^2 - 6x - 9`
`= (3x^2 - x^2) + (6x - 6x) + (3 - 9)`
`= 2x^2 - 6`
Như vậy `A ` vẫn phải phụ thuộc vào `x`
---------------------------
Bạn xem lại đề bài nhé
A B C D E M
Hướng giải:
Dễ dàng chứng minh được ADME là hình chữ nhật => DM=AE
Dễ dàng chứng minh được tg EMC cân tại E => EM=EC
=> DM+EM=AE+EC=AC=4 cm không đổi
\(S_{ADME}=EM.DM\)
Hai số coa tổng không đổi thì tích của chúng lớn nhất khi 2 số bằng nhau => \(S_{ADME}\) lớn nhất khi EM=DM
Khi đó sẽ c/m được M là trung điểm của BC
\(a.\left(x+y\right)^2+\left(x-y\right)^2\\ =x^2+2xy+y^2+x^2-2xy+y^2\\ =2x^2+2y^2\\ b.\left(x-y\right)^2-\left(x+y\right)^2\\ =x^2-2xy+y^2-x^2-2xy-y^2\\ =-4xy\\ c.2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\\ =2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\\ =2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\\ =4x^2\\ d.\left(x+y\right)^2-4xy-\left(x-y\right)^2\\ =x^2+2xy+y^2-4xy-x^2+2xy-y^2\\ =0\\ e.\left(x-2y\right)\left(x+2y\right)+\left(x+2y\right)^2\\ =x^2-4y^2+x^2+4xy+4y^2\\ =2x^2+4xy\)
\(\left(x+4\right)\left(x-4\right)-\left(x-3\right)^2\)
\(=x^2-16-\left(x^2-6x+9\right)\)
\(=x^2-16-x^2+6x-9\)
=6x-25