He has met her since he was young
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)
\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)
\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)
\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)




vì ở nông thôn có không khí không bị ô nghiễm, ít tiếng ồn hơn và cảm thế mát mẻ (là điều ngày càng trở nên quan trọng trong bối cảnh khí hậu toàn cầu ngày càng ấm nóng lên).
chúc bạn học tốt nha
vì phụ huynh ở những vùng thiểu số thường có xu hướng sinh con để giúp phụ việc cho họ, dễ kiếm sống hơn và cũng có môi trường tương đối để đẻ.

Bằng phản chứng giả sử \(\left(B\Rightarrow C\right)\Rightarrow\left(A\Rightarrow C\right)\)sai
Khi đó \(B\Rightarrow C\)đúng và \(A\Rightarrow C\)sai
(Nhớ rằng mệnh đề Giả thiết - Kết luận chỉ sai khi Giả thiết đúng và Kết luận sai)
Vì \(A\Rightarrow B\)và \(B\Rightarrow C\)đều đúng nên \(A\Rightarrow B\Rightarrow C\)đúng
Lúc này \(A\Rightarrow C\)đúng ----> Mâu thuẫn giả thiết ---> Đề bài đúng.

\(\left(x+2\right)+\left(x+4\right)+...+\left(x+40\right)=800\)
\(\Leftrightarrow40x+2\left(1+2+3+...+20\right)=800\)
\(\Leftrightarrow40x+2.\frac{\left(20+1\right).20}{2}=800\)
\(\Leftrightarrow40x+21.20=800\)
\(\Leftrightarrow x=\frac{800-21.20}{40}=9,5\)

a, \(\sqrt{\left(x+2\right)^2}=2x+1\Leftrightarrow x+2=2x+1\Leftrightarrow-x=-1\Leftrightarrow x=1\)
b, \(\sqrt{4x^2-4x+1}=\sqrt{x^2-2x+1}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-1\right)^2}\Leftrightarrow2x-1=x-1\Leftrightarrow x=2\)
c, \(\sqrt{x^2-6x+9}=5\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\Leftrightarrow x=8\)
d, \(\sqrt{4x^2-12x+9}=\sqrt{9x^2-24x+16}\Leftrightarrow\sqrt{\left(2x-3\right)^2}=\sqrt{\left(3x-4\right)^2}\)
\(\Leftrightarrow2x-3=3x-4\Leftrightarrow-x=-1\Leftrightarrow x=1\)
a) \(\sqrt{\left(x+2\right)^2}=2x+1\)
<=> \(\left|x+2\right|=2x+1\)
<=> \(\orbr{\begin{cases}x+2=2x+1\left(đk:x\ge-2\right)\\-x-2=2x+1\left(Đk:x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}-x=-1\\-3x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}\)
Vậy S = {1}
b) \(\sqrt{x^2-6x+9}=5\)
<=> \(\sqrt{\left(x-3\right)^2}=5\)
<=> \(\left|x-3\right|=5\)
<=> \(\orbr{\begin{cases}x-3=5\left(đk:x\ge3\right)\\3-x=5\left(đk:x< 3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=8\left(tm\right)\\x=-2\left(tm\right)\end{cases}}\)
Vậy S = {-2; 8}
c) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-2x+1}\)
<=> \(\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-1\right)^2}\)
<=> \(\left|2x-1\right|=\left|x-1\right|\)
<=> \(\orbr{\begin{cases}2x-1=x-1\\2x-1=1-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
Vậy S = {0; 2/3}
d) \(\sqrt{4x^2-12x+9}=\sqrt{9x^2-24x+16}\)
<=> \(\sqrt{\left(2x-3\right)^2}=\sqrt{\left(3x-4\right)^2}\)
<=> \(\left|2x-3\right|=\left|3x-4\right|\)
<=> \(\orbr{\begin{cases}2x-3=3x-4\\2x-3=4-3x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=\frac{7}{5}\end{cases}}\)
Vậy S = {1; 7/5}
đúng r đó