Tính \(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
\(\frac{a+6}{b+14}=\frac{3}{7}\)
=> 7 ( a + 6 ) = 3 ( b + 14 )
=> 7a + 42 = 3b + 42
=> 7a = 3b
=> a/b = 3/7
Bài 2 :
a/b = 198/234 = 11/13
Số a là : 72 : ( 11 + 13 ) . 11 = 33
Số b là : 72 - 33 = 39
=> a/b = 33/39
Vạy,...........
=> 7 ﴾ a + 6 ﴿ = 3 ﴾ b + 14 ﴿
=> 7a + 42 = 3b + 42
=> 7a = 3b => a/b = 3/7
Bài 2 :
a/b = 198/234
= 11/13
Số a là :
72 : ﴾ 11 + 13 ﴿ . 11 = 33
Số b là :
72 ‐ 33 = 39
=> a/b = 33/39

c/ \(\frac{11.13+22.26+33.39}{22.26+44.52+66.78}=\frac{11.13+11.2.13.2+11.3.13.3}{11.2.13.2+11.2.2.13.2.2+11.2.3.13.2.3}=\frac{11.13.\left(1+2.2+3.3\right)}{11.2.13.2\left(1+2.2+3.3\right)}=\frac{11.13}{11.2.13.2}=\frac{1}{4}\)
a/7.(11+32) 7.43 301 1
----------------=---------=------=----
21.(25+18) 21.43 903 3

a.Vì x-y=9 nen (x+1)-y=10
.............................
=>x+1=15 và y=25
vay x=14;y=25
b.Vì x+y=16 nen(3+x)+(5+y)=24
..............(cho nay thi ban tu lam)
=>3+x=9 và 5+y=15
vay x=6;y=10

D=(7*1+7*7)+(73*1+7*7)+...+(72009*1+72009*7)
D=7*(1+7)+73*(1+7)+...+72009*(1+7)
D=7*8+73*8+...+72009*8
D=(7+73+...+72009)*8 chia hết cho 8(vì 8chia hết cho 8)
vậy D chia hết cho 8
bạn hãy làm thử chia hết cho 57 đi
bằng cách gộp 3 số hạng đó mà.

Chia hết cho 13
B=(3*1+3*3+3*32)+(34*1+34*3+34*32)+...+(32008*1+32008*3+32008*32)
B=3*(1+3+32)+34*(1+3+32)+...+32008*(1+3+32)
B=3*(1+3+9)+34*(1+3+9)+...+32008*(1+3+9)
B=3*13+34*13+...+32008*13
B=(3+34+...+32008)*13 chia hết cho 13(Vì 13 chia hết cho 13)
Vậy B chia hết cho 13
Ta có:
B = 31 + 32 + 33 + 34 + ... + 32010
= ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + ... + 32007 ( 31 + 32 + 33 )
= 39 + 33 . 39 + ... + 32007 . 39
= 39 ( 1 + 33 + ... + 32007 )
→ B chia hết cho 39 mà 39 chia hết cho 13 nên B chia hếtt cho 13

Chi ơi bài cậu giống bài của bạn trần nhật anh nên mình giải 2 con rồi bạn xem đi

*Nếu p=2 thì p+4=6 là hợp số(loại)
*Nếu p=3 thì:
+p+4=7
+p+8=11
=> Đều là số nguyên tố(chọn)
*Nếu p>3 thì p=3k+1 hoặc p=3k+2+
p=3k+1 thì p+8=3k+9 chia hết cho 3(loại)
p=3k+2 thì p+4=3k+6 chia hết cho 3(loại)
Vậy p=3
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(A=\frac{1}{3}.\frac{9}{20}\)
\(A=\frac{3}{20}\)
\(A=\frac{1}{2\times5}+\frac{1}{5\times8}+...+\frac{1}{17\times20}\)
\(A\times3=\frac{3}{2\times5}+\frac{3}{5\times8}+...+\frac{3}{17\times20}\)
\(A\times3=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(A\times3=\frac{1}{2}-\frac{1}{20}\)
\(A\times3=\frac{9}{20}\)
\(A=\frac{3}{20}\)