Rút gọn:
\(\left(\frac{2-\sqrt{5}}{2+\sqrt{5}}-\frac{2+\sqrt{5}}{2-\sqrt{5}}\right):20\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=50x49+53x50
B=50x(49+53)
B=50x102
vậy A<B vì 50x101<50x102
Bg
Ta có: A = 101.50 và B = 50.49 + 53.50
Xét B = 50.49 + 53.50:
=> B = 50.(49 + 53)
=> B = 50.102
Vì 101.50 < 50.102 nên A < B
Vậy A < B
choose the best answer
1.my hobby is ..............dolls (collect/collecting/collects/collected)
2.he does................everyday.(camping/babminton/gymnass/photos)
3.my younger brother loves..................monopoly with me evrery evening.(riding/talk/playing/walking)
4.they....................that swimming is interesting .(/think/have/make)
5.they ...................shopping for food on sundays.(collect/are doing/will go/go)
Ta có :
\(\frac{n^2+2n+1}{n+23}\in Z\Rightarrow n^2+2n+1⋮n+23\)
\(\Rightarrow n^2+23n-\left(21n-1\right)⋮n+23\)
\(\Rightarrow n\left(n+23\right)-\left(21n-1\right)⋮n+23\)
Mà \(n\left(n+23\right)⋮n+23\)
\(\Rightarrow21n-1⋮n+23\)
\(\Rightarrow21n+483-484⋮n+23\)
\(\Rightarrow21\left(n+23\right)-484⋮n+23\)
,Mà \(21\left(n+23\right)⋮n+23\)
\(\Rightarrow484⋮n+23\)
Vậy n lớn nhất \(\Leftrightarrow n+23=484\)
\(\Leftrightarrow n=461\)
\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
<=> \(\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
<=> \(\left|x-4\right|+\left|x+2\right|=0\)
<=> \(\left|4-x\right|+\left|x+2\right|=0\)
Ta thấy: \(\left|4-x\right|+\left|x+2\right|\ge\left|4-x+x+2\right|=\left|6\right|=6\)
mà \(\left|4-x\right|+\left|x+2\right|=0\)
=> pt vô nghiệm
(556/31-31/8)-(90/31-4)
3567/248-(90/31-4)
3567/248+34/31
3839/248
a) 2001 x 757 + 2002 x 233
= 2001 x 757 + (2001 + 1) x 233
= 2001 x 757 + 2001 x 233 + 1 x 233
= 2001 x (757+233) + 233
= 2001 x 1000 + 233
= 2001000 + 233
= 2001233
a) 2001x757+2002x243
=2001 x 757+ (2001+1) x233
=2001 x757+2001x233+1 x233
=2001x(757+233)+233
=2001x1000 +233
=201000+233
=2001233
b)(m:1-m x1):(mx2001+m+1)
=(m-m):(mx2001+m+1)
=0:(mx2001+m+1)
=0
Học tốt
a; - \(\dfrac{1}{3}\).(15\(x-9\)) + \(\dfrac{2}{7}\).(- \(x-34\)) = 1 - \(\dfrac{3}{4}\).(-16\(x+4\))
- 5\(x\) + 3 - \(\dfrac{2}{7}\)\(x\) - \(\dfrac{68}{7}\) = 1 + 12\(x\) - 3
12\(x\) + 5\(x\) + \(\dfrac{2}{7}x\) = 3 - \(\dfrac{68}{7}\) - 1 + 3
17\(x\) + \(\dfrac{2}{7}x\) = (3 - 1 + 3) - \(\dfrac{68}{7}\)
\(\dfrac{121}{7}\)\(x\) = 5 - \(\dfrac{68}{7}\)
\(\dfrac{121}{7}\) \(x\) = - \(\dfrac{33}{7}\)
\(x\) = - \(\dfrac{33}{7}\): \(\dfrac{121}{7}\)
\(x\) = - \(\dfrac{3}{11}\)
Vậy \(x\) = - \(\dfrac{3}{11}\)
\(\left(\frac{2-\sqrt{5}}{2+\sqrt{5}}-\frac{2+\sqrt{5}}{2-\sqrt{5}}\right):20.\)
= \(\left(\frac{\left(2-\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2}{\left(2+\sqrt{5}\right)\cdot\left(2-\sqrt{5}\right)}\right):20\)
= \(\left(\frac{4-2\sqrt{5}+5-4-2\sqrt{5}-5}{\left(2+\sqrt{5}\right)\cdot\left(2-\sqrt{5}\right)}\right):20\)
= \(\frac{-4\sqrt{5}}{4-5}:20\)
= \(\frac{-\sqrt{5}}{5}\)
hok tốt =>