Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Cặp góc kề bù là:
\(\widehat{ADB}\) và \(\widehat{ADC}\)
Cặp góc kề bù có trong hình trên là:
\(\widehat{ADB}\) và \(\widehat{ADC}\)
-315/380 = -120015/144780
-316/381 = -120080/144780
Do -120015 > -120080
-120015/144780 > -120080/144780
⇒ -315/380 > -316/381
Lời giải:
$(x-1)^2=\frac{1}{16}=(\frac{1}{4})^2=(\frac{-1}{4})^2$
$\Rightarrow x-1=\frac{1}{4}$ hoặc $x-1=\frac{-1}{4}$
$\Rightarrow x=\frac{5}{4}$ hoặc $x=\frac{3}{4}$
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
Lời giải:
$A=5(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{2019.2023})$
$4A=5(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{2019.2023})$
$=5(\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{2023-2019}{2019.2023})$
$=5(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{2019}-\frac{1}{2023})$
$=5(\frac{1}{3}-\frac{1}{2023})=\frac{2020}{6069}$
$\Rightarrow A=\frac{2020}{6069}:4=\frac{505}{6069}$
a, - 1,2 + (- 0,8) + 0,25 + 5,75 - 2021
= - (1,2 + 0,8) + (0,25 + 5,75) - 2021
= - 2 + 6 - 2021
= 4 - 2021
= - 2017
b, - 0,1 + \(\dfrac{16}{9}\) + 11,1 - \(\dfrac{20}{9}\)
= (11,1 - 0,1) - (\(\dfrac{20}{9}\) - \(\dfrac{16}{9}\))
= 11 - \(\dfrac{4}{9}\)
= \(\dfrac{95}{5}\)
(2x)⁴ + (2x + y)² = 0 (1)
Do (2x)⁴ ≥ 0 với mọi x ∈ R
(2x + y)² ≥ 0 với mọi x, y ∈ R
(1) ⇒ (2x)⁴ = 0 và (2x + y)² = 0
*) (2x)⁴ = 0
2x = 0
x = 0
*) (2x + y)² = 0
2x + y = 0
y = -2x
y = 0
Vậy x = y = 0