K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a\cdot b=420\)

=>\(\left(a;b\right)\in\){(1;420);(420;1);(2;210);(210;2);(3;140);(140;3);(4;105);(105;4);(5;84);(84;5);(6;70);(70;6);(7;60);(60;7);(10;42);(42;10);(12;35);(35;12);(14;30);(30;14);(15;28);(28;15);(20;21);(21;20)}

mà a>b>10

nên \(\left(a;b\right)\in\left\{\left(21;20\right);\left(28;15\right);\left(35;12\right);\left(30;14\right)\right\}\)

mà BCNN(a;b)=210

nên \(\left(a;b\right)\in\left\{\left(30;14\right)\right\}\)

Câu 1:

-2;x;-18;y là cấp số nhân

=>\(\left\{{}\begin{matrix}x^2=\left(-2\right)\cdot\left(-18\right)\\\left(-18\right)^2=x\cdot y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=36\\xy=324\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=\dfrac{324}{6}=54\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=\dfrac{324}{-6}=-54\end{matrix}\right.\end{matrix}\right.\)

=>Chọn C

Câu 2:

\(u_4=u_2\cdot q^2\)

=>\(4q^2=9\)

=>\(q^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)

=>\(\left[{}\begin{matrix}q=\dfrac{3}{2}\\q=-\dfrac{3}{2}\end{matrix}\right.\)

TH1: q=3/2

\(u_2=q\cdot u_1\)

=>\(u_1=\dfrac{u_2}{q}=4:\dfrac{3}{2}=4\cdot\dfrac{2}{3}=\dfrac{8}{3}\)

\(u_5=u_1\cdot q^4=\dfrac{8}{3}\cdot\left(\dfrac{3}{2}\right)^4=\dfrac{8}{3}\cdot\dfrac{81}{16}=\dfrac{27}{2}\)

\(u_8=u_1\cdot q^7=\dfrac{8}{3}\cdot\left(\dfrac{3}{2}\right)^7=\dfrac{2^3}{3}\cdot\dfrac{3^7}{2^7}=\dfrac{3^6}{2^4}=\dfrac{729}{16}\)

TH2: q=-3/2

\(u_1=\dfrac{u_2}{q}=4:\dfrac{-3}{2}=4\cdot\dfrac{-2}{3}=-\dfrac{8}{3}\)

\(u_5=u_1\cdot q^4=-\dfrac{8}{3}\cdot\left(-\dfrac{3}{2}\right)^4=-\dfrac{8}{3}\cdot\dfrac{81}{16}=\dfrac{-27}{2}\)

\(u_8=u_1\cdot q^7=\dfrac{-8}{3}\cdot\left(-\dfrac{3}{2}\right)^7=\dfrac{-2^3}{3}\cdot\dfrac{\left(-3\right)^7}{2^7}=\dfrac{2^3}{3}\cdot\dfrac{3^7}{2^7}=\dfrac{3^4}{2^4}=\dfrac{81}{16}\)

Câu 3:

\(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1\cdot q^4=51\\u_1\cdot q+u_1\cdot q^5=102\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1\cdot q^4=51\\q\left(u_1+u_1\cdot q^4\right)=102\end{matrix}\right.\Leftrightarrow q=2\)

\(u_1+u_5=51\)

=>\(u_1\left(1+q^4\right)=51\)

=>\(u_1=\dfrac{51}{2^4+1}=\dfrac{51}{17}=3\)

\(u_4=u_1\cdot q^3=3\cdot2^3=24\)

\(u_{12}=u_1\cdot q^{11}=3\cdot2^{11}=6144\)

1 tháng 7

Ta có: 

\(27^n< 81^3\\ \Rightarrow\left(3^3\right)^n< \left(3^4\right)^3\\\Rightarrow 3^{3n}< 3^{12}\\ \Rightarrow3n< 12\\\Rightarrow n< \dfrac{12}{3}=4\)

Mà n là số tự nhiên nên:

\(n\in\left\{0,1,2,3\right\}\)

Vậy \(n\in\left\{0,1,2,3\right\}\)

1 tháng 7

a; 285 + 470 + 115 + 230

= (285 + 115) + (470 + 230)

= 400 + 700

= 1100

b; 571 + 216 + 129 + 124

= (571 + 129) + (216  + 124)

= 700 + 340

= 1040 

1 tháng 7

 a,Ngày 1 đội lắp được số mét đường dây điện là:

       \(\dfrac{2}{3}\) x 300 = 200 ( m)

   Ngày 2 đội lắp được số mét đường dây điện là:

       \(\dfrac{2}{5}\) x 300 = 120 ( m)

b, Sau hai ngày đã làm, đội còn lại số mét đường dây điện chưa lắp xong là:

     200 - 120  = 80

Đ/s: 80 m 

 

1 tháng 7

x chia cho 13 được thương là 17 và dư là 9

=> x : 13 = 17 (dư 9)

=> (x - 9) : 13 = 17

=> x - 9 =13 x 17

=> x - 9 = 221

=> x = 221 + 9 = 230

1 tháng 7

Tổng số lượt hành khách mà nhà ga số 1 và số 2 có thể tiếp nhận mỗi năm là:

    6 526 300 + 3 514 500 = 10 040 800 (lượt)

Do tổng số khách cả ba nhà ga mà sân bay có thể tiếp nhận mỗi năm khoảng 22 851 200 lượt khách hàng nên

 

Số lượt hành khách mà nhà ga số 3 có thể tiếp nhận mỗi năm là:

22 851 200 - 10 040 800 = 12 810 400 (lượt)

Đ/s: 12 810 400 lượt khách

Đáp số: 12 810 400 lượt hành khách. à ga số 3 có thể tiếp nhận mỗi năm là:

1 tháng 7

                         Giải:

Số dân của Việt Nam trong năm 2020 là:

      96 462 106 + 876 473 = 97 338 579 (người)

Kết luận: 97 338 579 (người)

 

 

 

 

1 tháng 7

y = (m-2)x+2m-1 (a = m-2 và b=2m-1) 

a) Đề hàm số là hàm số bậc nhất thì:

\(a\ne0\Rightarrow m-2\ne0\Leftrightarrow m\ne2\)

b) y=-2x+3 (a'=-2)

Để (d) song song với (d') thì: 

\(a=a'\\ \Rightarrow m-2=-2\Rightarrow m=0\) 

c) Để (d) cắt (d1) tại một điểm trên trục hoành thì: `y=0`

=> (d1) `y=x-2=0=>x=2` 

\(\left(d\right)y=\left(m-2\right)x+2m-1=0\Rightarrow\left(m-2\right)x=1-2m\Rightarrow x=\dfrac{1-2m}{m-2}\)

Mà: `x=2` nên:

\(2=\dfrac{1-2m}{m-2}\Leftrightarrow2\left(m-2\right)=1-2m\Leftrightarrow2m-4=1-2m\\ \Leftrightarrow2m+2m=1+4=5\\ \Leftrightarrow4m=5\\ \Leftrightarrow m=\dfrac{5}{4}\left(tm\right)\)

9: \(A=\dfrac{\dfrac{1}{4}-5\cdot\left(\dfrac{3}{2}\right)^2}{10\dfrac{5}{9}+\left(-\dfrac{2}{3}\right)^2}=\dfrac{\dfrac{1}{4}-5\cdot\dfrac{9}{4}}{10+\dfrac{5}{9}+\dfrac{4}{9}}\)

\(=\dfrac{\dfrac{1}{4}-\dfrac{45}{4}}{10+1}=\dfrac{-44}{4}:11=-\dfrac{44}{44}=-1\)

\(B=\dfrac{5}{12}\cdot3,7-\dfrac{5}{12}\cdot6,7=\dfrac{5}{12}\cdot\left(3,7-6,7\right)\)

\(=\dfrac{5}{12}\cdot\left(-3\right)=-\dfrac{5}{4}\)

\(A-B=\left(-1\right)-\left(-\dfrac{5}{4}\right)=-1+\dfrac{5}{4}=\dfrac{1}{4}\)

10: \(P=\left(6,8;1,36-\dfrac{29}{3}:\dfrac{58}{9}\right):\dfrac{0.27^3}{0.09^3\cdot2}\)

\(=\left(5-\dfrac{29}{3}\cdot\dfrac{9}{58}\right):\dfrac{\left(0,3\right)^6\cdot3^3}{0,3^6\cdot2}\)

\(=\left(5-\dfrac{3}{2}\right):\dfrac{3^3}{2}=\dfrac{7}{2}\cdot\dfrac{2}{27}=\dfrac{7}{27}\)

\(P+\dfrac{1}{27}=\dfrac{7}{27}+\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)

=>\(P+\dfrac{1}{27}\) là bình phương của một số hữu tỉ