Cho hai biểu thức $A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}$ và $B=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{2 \sqrt{x}}{4-x}$ vói $x \geq 0, x \neq 4$. a) Tính giá trị biểu thức $A$ với $x=1$. b) Chứng minh $B=\dfrac{\sqrt{x}}{\sqrt{x}+2}$ c) Tìm $x$ để $A \cdot B \geq 0$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/
BC=6 => Bán kính (O) là R=3cm
Ta có
sđ \(\widehat{NBC}=30^o=\dfrac{1}{2}\) sđ cung NC (Góc nội tiếp đường tròn)
=>sđ cung NC = 2.sđ \(\widehat{NBC}=60^o\)
\(\Rightarrow l_{NC}=\dfrac{\Pi.R.n}{180}=\dfrac{\Pi.3.60^o}{180^o}=\Pi\simeq3,14cm\)
\(S=\dfrac{\Pi.R^2.n}{360^o}=\dfrac{\Pi.9.60^o}{360^o}=\dfrac{9.\Pi}{4}cm^2\)
c/ Ta có
\(\widehat{BNC}=\widehat{BMC}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{ANB}=\widehat{AMC}=90^o\)
=> \(BN\perp AC;CM\perp AB\Rightarrow AH\perp BC\) tại K (trong tg ABC 3 đường cao đồng quy tại trực tâm H)
Xét tg vuông AKC và tg vuông BNC có
\(\widehat{HAN}=\widehat{NBC}\) (cùng phụ với \(\widehat{ACB}\) )
d/
Xét tứ giác BMHK có M và K cùng nhìn BH dưới 1 góc 90 độ => BMHK là tứ giác nội tiếp
\(\Rightarrow\widehat{NBC}=\widehat{HMK}\) (góc nội tiếp cùng chắn cung HK)
Xét tứ giác nội tiếp (O) BMNC có
\(\widehat{NBC}=\widehat{HMN}\) (góc nội tiếp cùng chắn cung NC)
\(\Rightarrow\widehat{HMK}=\widehat{HMN}\) => MH là phân giác \(\widehat{KMN}\)
C/m tương tự ta cũng có NH là phân giác của \(KNM\)
=> KI là phân giác của \(\widehat{MKN}\) (trong tg 3 đường phân giác đồng quy)
Xét tg KMN có
\(\dfrac{IM}{MK}=\dfrac{IN}{NK}\) (T/c đường phân giác: Trong một tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với 2 cạnh kề với hai đoạn thẳng đó) (đpcm)
Để PT có nghiệm bằng \(-1\), thay \(x=-1\) ta có:
\(\left(-1\right)^2-\left(2m-3\right)\left(-1\right)+m^2=0\\ \Leftrightarrow1+2m-3+m^2=0\\ \Leftrightarrow m^2+2m-2=0\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\\m=-1-\sqrt{3}\end{matrix}\right.\)
Với \(m=-1+\sqrt{3}\Rightarrow x_1x_2=m^2=4-2\sqrt{3}\Rightarrow x_2=-4+2\sqrt{3}\)
Với \(m=-1-\sqrt{3}\Rightarrow x_1x_2=m^2=4+2\sqrt{3}\Rightarrow x_2=-4-2\sqrt{3}\)
Để pt đã cho có nghiệm bằng -1 thì \(1-\left[-\left(2m-3\right)\right]+m^2=0\)\(\Leftrightarrow1+2m-3+m^2=0\)\(\Leftrightarrow m^2+2m-2=0\)\(\Leftrightarrow\left(m+1\right)^2-\left(\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(m+1+\sqrt{3}\right)\left(m+1-\sqrt{3}\right)=0\)\(\Leftrightarrow m=-1\pm\sqrt{3}\)
Khi đó nghiệm còn lại bằng \(\dfrac{m^2}{1}=\left(-1\pm\sqrt{3}\right)^2=4\mp2\sqrt{3}\)
Khi \(m=-1+\sqrt{3}\) thì nghiệm còn lại bằng \(4-2\sqrt{3}\)
Khi \(m=-1-\sqrt{3}\) thì nghiệm còn lại bằng \(4+2\sqrt{3}\)