Tìm x biết (4-x) ⋮ (x+1) với x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì góc yOz và góc xOy là hai góc kề bù nên Oz và Ox cùng nằm trên một đường thẳng zx (1)
Tương tự ta có: Ot và Oy cùng nằm trên một đường thẳng
\(\widehat{xOt}\) và \(\widehat{yOz}\) là hai góc đối đỉnh
⇒ \(\widehat{O_2}\) = \(\dfrac{1}{2}\) \(\widehat{xOt}\) = \(\dfrac{1}{2}\) \(\widehat{yOz}\) = \(\widehat{O_5}\)
Mặt khác ta có: \(\widehat{O_2}\) + \(\widehat{O_1}\) + \(\widehat{O_6}\) = 1800 (gt)
⇒ \(\widehat{O_1}\) + \(\widehat{O_6}\) + \(\widehat{O_5}\) = 1800
⇒ Om và On cùng thuộc một đường thẳng mn (2)
Kết hợp (1) và (2) ta có: góc zOn và góc xOm là hai góc đối đỉnh
Lời giải:
Vì $x,y$ là 2 đại lượng tỉ lệ nghịch nên đặt $xy=k$ với $k$ là 1 số thực không đổi.
Khi $x=\frac{1}{2}; y=2$ thì:
$k=xy=\frac{1}{2}.2=1$
Đáp án C.
Ta có: Ư(3)={-3;-1;1;3}
Để (2x-3). (y+1) = 3 mà x,y là các số nguyên
=> \(\left(2x-3\right)\inƯ\left(3\right);\left(y+1\right)\inƯ\left(3\right)\)
Ta có:
2x-3 | -3 | -1 | 1 | 3 |
y+1 | -1 | -3 | 3 | 1 |
x | 0 | 1 | 2 | 3 |
y | -2 | -4 | 2 | 0 |
Vậy các cặp (x;y) thoả mãn là: \(\left(x;y\right)=\left\{\left(0;-2\right);\left(1;-4\right);\left(2;2\right);\left(3;0\right)\right\}\)
Ta có : \(\left\{{}\begin{matrix}2x=3y\\4y=3z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\)
`=> x/9 =y/6 =z/8=>x/9 =y/6 = (2z)/16` và `x-y+2z=57`
ADTC dãy tỉ số bằng nhau ta có :
`x/9 =y/6 = (2z)/16 = (x-y+2z)/(9-6+16) = 57/19=3`
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\Rightarrow x=3\cdot9=27\\\dfrac{y}{6}=3\Rightarrow y=3\cdot6=18\\\dfrac{z}{8}=3\Rightarrow z=3\cdot8=24\end{matrix}\right.\)
`
a) Ta có:
∠xOy + ∠yOz = 150⁰
∠xOy - ∠yOz = 90⁰
⇒ ∠xOy = (150⁰ + 90⁰) : 2 = 120⁰
⇒ ∠yOz = 120⁰ - 90⁰ = 30⁰
b) Ta có:
∠xOy + ∠x'Oy = 180⁰ (kề bù)
⇒ ∠x'Oy = 180⁰ - ∠xOy
= 180⁰ - 120⁰
= 60⁰
4 - x = -(x - 4) = -(x + 1 - 5)
= -(x + 1) + 5
Để (4 - x) ⋮ (x + 1) thì 5 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ x ∈ {-6; -2; 0; 4}