K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow\frac{abz+bcx+cay}{abc}=0\)

\(\Rightarrow abz+bcx+cay=0\)

\(\Rightarrow\frac{abz+bcx+cay}{xyz}=0\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=4\)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ca}{zx}\right)=4\)

\(\Rightarrow M+2\left(\frac{abz+bcx+cay}{xyz}\right)=4\)

\(\Rightarrow M+2.0=4\Rightarrow M=4\)

Chúc bạn học tốt ! Lê Tài Bảo Châu

11 tháng 8 2019

cách làm nhưng ko chắc 

\(\left(x+y\right)^2=\left(x+1\right)\left(y-1\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x+y\right)=\left(x+1\right)\left(y-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x+y=x+1\\x+y=y-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y-x=1\\x+y-y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

11 tháng 8 2019

Cảnh báo anh Lê Tài Bảo Châu

Cách đó của anh làm là sai nha !

-_-

11 tháng 8 2019

ban can gap ko

11 tháng 8 2019

ko mai

11 tháng 8 2019

\(\left|x-5\right|=3x\)

với   \(x\ge5\)ta có 

x-5=3x

=>2x=-5

=>x=-5/2   (loại)

Với x< ta có 

5-x=3x

=>4x=5

=> x=5/4 (TM)

11 tháng 8 2019

còn câu kia bn

Vì ABCD là hình bình hành 

=> AB = CD 

=> AD = BC 

=> BAD = BCD

=> ABC = ADC 

Ta có : 

AI + IB = AB 

KC + KD = CD 

Mà AB = CD (cmt)

=> IB = KD 

Xét ∆IBJ và ∆LDK ta có : 

BJ = DL 

DK = BI 

ABC = ADC (cmt)

=> ∆IBJ = ∆LDK(c.g.c)

=> JI = LK ( tương ứng) (1)

Ta có : 

AL + LD =AD 

BJ + JC = BC 

Mà BC = AD 

=> LD = CJ 

Xét ∆IAL và ∆JCK ta có : 

AI = KC (gt)

JC = AL (cmt)

BAD = BCD (cmt)

=> ∆IAL = ∆JCK(c.g.c)

=> LI = JK ( tương ứng) (2)

Từ (1) và (2) ta có : 

=> ILKJ là hình bình hành 

=> AC và BD cắt nhau tại trung điểm mỗi đường 

=> AC và BD cắt nhau tại trung điểm AC (*)

Xét ∆ABJ và ∆DLC ta có : 

AB = CD(cmt)

ABC = ADC(cmt)

BJ = CL (gt)

=> ∆ABJ = ∆DLC (c.g.c)

=> JA = LC ( tương ứng) (3)

Mà AL = JC (cmt) (4)

Từ (3) và (4) ta có : 

=> JALC là hình bình hành 

=> AC và JL cắt nhau tại trung điểm mỗi đường 

=> AC và JL cắt nhau tại trung điểm AC(**)

Mà JILK là hình bình hành 

=> IK và LJ cắt nhau tại trung điểm mỗi đường 

=> IK và LJ cắt nhau tại trung điểm LJ(***)

Từ (*)(**)(***) AC , BD , IK , LJ đồng quy tại 1 điểm

a,b,c khong am nen (ab+bc+ca)...>=9/4 co the dung don bien nhe ban

con cau tra loi thi khong bit

10 tháng 8 2019

nguyễn xuân trợ: bớt xàm đi bạn, cái bạn hỏi đã bảo chúng ta dùng phương pháp dồn biến rồi nha!

10 tháng 8 2019

sai cmnr rồi

10 tháng 8 2019

A B C I N M J P Q R K

Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.

Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.

Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A

=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB

Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành

Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng

Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)

=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)

Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ

Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900  (2)

Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC

Vậy MN < BC.