K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

Ta có: \(n_{Zn}=\dfrac{13}{65}=0,2\left(mol\right)\)

PT: \(Zn+2HCl\rightarrow ZnCl_2+H_2\)

a, nH2 = nZn = 0,2 (mol)

⇒ VH2 = 0,2.24,79 = 4,958 (l)

b, nZnCl2 = nZn = 0,2 (mol)

⇒ mZnCl2 = 0,2.136 = 27,2 (g)

c, \(H=\dfrac{3,225}{4,958}.100\%\approx65,05\%\)

15 tháng 12 2023

Cố gắng bạn nhé.

15 tháng 12 2023

Viết đề cho đầy đủ và chính xác đi em

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Lời giải:
Theo đề thì AB là đường trung bình ứng với đáy NP của tam giác $MNQ$.

$\Rightarrow AB=\frac{NP}{2}=\frac{18}{2}=9$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Cần bổ sung thêm điều kiện về $x$ để tính min bạn nhé. Bạn xem lại đề.

15 tháng 12 2023

A B C M N O

Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên

\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\) 

Hai tg BCN và tg ABN có chung đường cao từ B->AC nên

\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)

\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)

\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)

Hai tg AMN và tg BMN có chung đường cao từ N->AB nên

\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)

Hai tam giác BMN và tam giác BCN có chung BN nên

\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)

Hai tg BOM và tam giác BOC có chung BO nên

\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)

Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)

\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)

15 tháng 12 2023

Sorry!

Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)

\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)