#NHANH Ạ!
* AI ĐÚNG MIK TIK !
1) CHO TAM GIÁC ABC NHỌN
CMR : a2 = b2 + c2 - 2bc.cosA^
( BC= a ; AC = b ; AB = c )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bi của Nam là x(viên)
(ĐIều kiện: \(x\in Z^+\))
Số viên bi của Dũng là x-7(viên)
Số viên bi của Thanh là x+5(viên)
Tổng số viên bi là 94 viên nên ta có:
x+x-7+x+5=94
=>3x=96
=>x=32(nhận)
Vậy: Số bi của Nam là 32 viên
Số viên bi của Dũng là 32-7=25 viên
Số viên bi của Thanh là 32+5=37 viên
Gọi n là hóa trị cao nhất của kim loại Z
\(Z+\dfrac{n}{2}Cl_2\underrightarrow{t^o}ZCl_n\)
\(n_Z=\dfrac{2,275}{Z}\)
\(m_{ZCl_n}=\dfrac{2,275}{Z}.\left(Z+35,5n\right)=\dfrac{2,275Z+80,7625n}{Z}=4,76\)
Với n = 2 => Z = 65
Vậy kim loại cần tìm là Zn (kẽm)
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
b: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>MN=AH
Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAH}\) chung
Do đó: ΔAMH~ΔAHB
=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AM\cdot AB=MN^2\)
Xét ΔANH vuông tại N và ΔAHC vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔANH~ΔAHC
=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)
=>\(AH^2=AN\cdot AC=MN^2\)
\(AM\cdot AB+AN\cdot AC=MN^2+MN^2=2MN^2\)
c: Ta có: \(\widehat{KAN}+\widehat{ANM}=90^0\)(AK\(\perp\)MN)
mà \(\widehat{ANM}=\widehat{B}\left(=\widehat{AHM}\right)\)
nên \(\widehat{KAN}+\widehat{B}=90^0\)
mà \(\widehat{B}+\widehat{C}=90^0\)
nên \(\widehat{KAC}=\widehat{KCA}\)
=>KA=KC
Ta có: \(\widehat{KAC}+\widehat{KAB}=90^0\)
\(\widehat{KCA}+\widehat{KBA}=90^0\)(ΔABC vuông tại A)
mà \(\widehat{KAC}=\widehat{KCA}\)
nên \(\widehat{KAB}=\widehat{KBA}\)
=>KA=KB
mà KA=KC
nên KB=KC
=>K là trung điểm của BC
Sửa đề: `x/2 = y/3` và `xy = 54`
Đặt `x/2 = y/3 = k`
`=> {(x = 2k),(y=3k):}`
Khi đó: `(2k)(3k) = 54`
`<=> 6k^2 = 54`
`<=> k^2 = 9`
`<=> k^2 = 3^2`
`<=> k = -3` hoặc `k = 3`
Xét `k = -3: `
`x = -3.2 = -6`
`y = -3.3 = -9`
Xét `k = 3: `
`x = 3.2 = 6`
`y = 3.3 = 9`
Vậy ...
sin a=0,3
=>\(a=arcsin\left(0,3\right)\simeq17^0\)
cos a=0,45
=>\(a=arccos\left(0,45\right)\simeq63^0\)
\(tana=2,5\)
=>\(a=arctan\left(2,5\right)\simeq68^0\)
Dựng \(BH\perp AC\left(H\in AC\right)\)
Xét tg vuông BHC có
\(BC^2=BH^2+CH^2\) (Pitago)
\(\Rightarrow a^2=BH^2+\left(AC-AH\right)^2=BH^2+AC^2+AH^2-2AC.AH=\)
\(=\left(BH^2+AH^2\right)+AC^2-2AC.AH\) (1)
Xét tg vuông AHB có
\(BH^2+AH^2=AB^2=c^2\)
\(AH=AB\cos A=c\cos A\)
Thay vào (1)
\(\Rightarrow a^2=b^2+c^2-2bc\cos A\)