Cho tam giác ABC có O là giao điểm của 3 đường trung trực. H là trực tâm và M là trung điểm của BC. Gọi K là điểm đối xứng của H qua M. Chứng minh rằng A đối xứng với K qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN
=> A1ˆ=D1ˆA1^=D1^(so le trong )
* Xét △AHB và △DHM có
H1ˆ=H2ˆ(=900)H1^=H2^(=900)
AH =HD (D đối xứng với A qua H )
A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)
=> △AHB = △DHM (g.c.g)
=> BH = MH (2 cạnh t/ứng )
* xét tứ giác ABDM có
AH=HD (d đối xứng với A qua H)
BH=MH (cmt)
=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
mà AD ⊥BM
=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)
b) vì
+DN//AB (gt)
+AB ⊥AC (△ABC vuông tại A)
=> AC ⊥DN (qh từ vuông góc đến song song )
=> DN là đường cao △ ADC(1)
mà AD ⊥CH ( AH ⊥AC)
=> CH là đường cao của △ADC
từ (1) và (2) => M là trực tâm của △ADC
=> AM là đường cao
=> AM ⊥DC (đpcm)