K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

\(VT\ge\frac{9}{a+b+c}+\frac{\left(a+b+c\right)^2}{3}=\left(\frac{\left(a+b+c\right)^2}{3}+\frac{1}{3\left(a+b+c\right)}+\frac{1}{3\left(a+b+c\right)}\right)+\frac{25}{3\left(a+b+c\right)}\ge\frac{28}{3}\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Tìm m để bất phương trình:mx^2+2mx-3<0 nghiệm đúng với mọi x€R

đúng hơn 0 hợp lý hơn bạn ạ

cbht

1 tháng 3 2021

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

15 tháng 2 2021

|x+1|+|x−1|=4

=>x+1+x-1=4

=>2x=4

=>x=2

Đề của bn có đúng k z

Chúc bạn học tốt

9 tháng 2 2021

Ta có: \(\hept{\begin{cases}x^2-xy+y^2=8\\x^2+3xy+y^2=15\end{cases}}\Leftrightarrow\hept{\begin{cases}4xy=7\\x^2-xy+y^2=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4y}\\x^2-xy+y^2=8\end{cases}}\) thay vào ta được:

\(\left(\frac{7}{4y}\right)^2-\frac{7}{4}+y^2=8\Leftrightarrow\frac{49}{16y^2}+y^2=\frac{39}{4}\)

\(\Leftrightarrow\frac{16y^4+49}{16y^2}=\frac{39}{4}\Leftrightarrow16y^4+49=156y^2\)

\(\Leftrightarrow16y^4-156y^2+49=0\)

\(\Leftrightarrow\orbr{\begin{cases}y^2=\frac{39+5\sqrt{53}}{8}\\y^2=\frac{39-5\sqrt{53}}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\sqrt{\frac{39+5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}}\\y=\sqrt{\frac{39-5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}}\end{cases}}\)

Vậy HPT có 2 nghiệm (x;y) thỏa mãn:

\(\left(\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}};\sqrt{\frac{39+5\sqrt{53}}{8}}\right);\left(\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}};\sqrt{\frac{39-5\sqrt{53}}{8}}\right)\)