Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
b, Xét tam giác AEB và tam giác DAB ta có
^AEB = ^DAB = 900
^B _ chung
Vậy tam giác AEB ~ tam giác DAB ( g.g )
mình lấy cái đáp án bài trước của mình nhé, vì cùng 1 bài á :)) nên sẽ hơi tắt
d, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.15.20=150\)cm2
\(S_{HCO}=\frac{1}{2}.OH.OC=\frac{1}{2}.\frac{9}{2}.OC\)
mà theo định lí Pytago ta có : \(OC^2=OH^2+HC^2=\frac{81}{4}+9=\frac{117}{4}\Rightarrow OC=\frac{3\sqrt{13}}{2}\)cm
\(\Rightarrow S_{HCO}=\frac{1}{2}.\frac{9}{2}.\frac{3\sqrt{13}}{2}=\frac{27\sqrt{13}}{8}\)cm2
\(S_{AIC}=\frac{1}{2}.AI.AC=\frac{1}{2}.\frac{15}{2}.15=\frac{225}{4}\)cm2
Vậy \(S_{IOHB}=S_{ABC}-S_{AIC}-S_{HCO}\)
\(=150-\frac{225}{4}-\frac{27\sqrt{13}}{8}\approx81,58\)cm2
Cho tam giác abc có góc a = 90, cạnh ac= 15,bc=25(cm) . Kẻ đường cao ah(h thuộc bc)Vẽ thêm đường phân giác ci ( i thuộc ab) . gọi O là giao điểm của ah và ci.CM:HC.AI=AC.HO
Biến đổi
HC.AI=AC.HO
<=> HC/HO=AC/AI
xét 2 tam giac HCO va tam giac ACI
mình chỉ nói ý thôi nhé
+) goc AHB = goc CAB cung = 90 do)
b la goc chung
+) tính AB dung py-ta-go
tính AH bang cach thay so vào các tỉ số dong dang của 2 tam giac tren
tính BH tương tự như tính AH
+) biến đổi
HC.AI=AC.HO
<=> HC/HO=AC/AI
xét 2 tam giac HCO va tam giac ACI
Bai 5 :
Theo giả thiết ta có : \(P=\frac{x\left(x+y+z\right)+yz}{y+z}+\frac{y\left(x+y+z\right)+zx}{z+x}+\frac{z\left(x+y+z\right)+xy}{x+y}\)
\(=\frac{x\left(x+y\right)+z\left(x+y\right)}{y+z}+\frac{y\left(y+z\right)+x\left(y+z\right)}{z+x}+\frac{z\left(y+z\right)+x\left(z+y\right)}{x+y}\)
\(=\frac{\left(x+y\right)\left(z+x\right)}{y+z}+\frac{\left(y+z\right)\left(x+y\right)}{z+x}+\frac{\left(z+x\right)\left(z+y\right)}{x+y}\)
Đặt \(\left\{x+y;y+z;z+x\right\}\rightarrow\left\{a;b;c\right\}\)bài toán quy về :
Cho \(\hept{\begin{cases}a+b+c=4\\a;b;c>0\end{cases}}\)Tìm GTNN của \(\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\)
Áp dụng bất đẳng thức AM-GM có :
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{acab}{bc}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{abbc}{ca}}=2b\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bcac}{ab}}=2c\)
Cộng theo vế 3 bất đẳng thức cùng chiều ta được :
\(2\left(\frac{ac}{b}+\frac{bc}{a}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)=2.4=8\)
\(< =>\frac{ac}{b}+\frac{bc}{a}+\frac{ab}{c}\ge\frac{8}{2}=4\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{4}{3}< =>x=y=z=\frac{2}{3}\)
Vậy GTNN của P = 4 khi \(x=y=z=\frac{2}{3}\)
\(1.x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(-2x^2+4x+2x^2-8x+x\)
\(x-4x\)
\(-3x\)
cách 2 :
\(x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(2x\left(-x+2\right)-2x\left(-x+4\right)+x\)
\(2x\left(-x+2+x-4\right)+x\)
\(-4x+x\)
\(-3x\)
\(2.x\left(-2x+4\right)-2x\left(-x+3\right)+x\)
\(2x\left(-x+2+x-3\right)+x\)
\(-2x+x\)
\(-x\)
a, \(x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(=-2x^2+4x+2x^2-8x+x=-3x\)
b, \(x\left(-2x+4\right)-2x\left(-x+3\right)+x\)
\(=-2x^2+4x+2x^2-6x+x=-x\)
Câu 5:
\(P=\frac{2x+yz}{y+z}+\frac{2y+zx}{z+x}+\frac{2z+xy}{x+y}\left(x,y,z>0\right)\).
Ta có:
\(\frac{2x+yz}{y+z}=\frac{x\left(x+y+z\right)+yz}{y+z}\)(vì \(x+y+z=2\)).
\(\Rightarrow\frac{2x+yz}{y+z}=\frac{x\left(x+y\right)+xz+yz}{y+z}=\frac{x\left(x+y\right)+z\left(x+y\right)}{y+z}\)\(=\frac{\left(x+z\right)\left(x+y\right)}{y+z}\).
Chứng minh tương tự, ta được:
\(\frac{2y+zx}{z+x}=\frac{\left(x+y\right)\left(y+z\right)}{z+x}\).
Chứng minh tương tự, ta được:
\(\frac{2z+xy}{x+y}=\frac{\left(y+z\right)\left(z+x\right)}{x+y}\).
Do đó:
\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(z+x\right)\left(y+z\right)}{x+y}\).
Đặt \(x+y=a;y+z=b;z+x=c\left(a,b,c>0\right)\)thì \(a+b+c=2\left(x+y+z\right)=2.2=4\). Do đó:
\(P=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\).
Vì \(a,b,c>0\) nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac.ab}{bc}}=2a\)\(\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{ac}{b}=\frac{ab}{c}\Leftrightarrow\frac{c}{b}=\frac{b}{c}\Leftrightarrow b=c>0\).
Chứng minh tương tự, ta được:
\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)\(\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).
Chứng minh tương tự, ta được:
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)\(\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\) , ta được:
\(\frac{ac}{b}+\frac{ab}{c}+\frac{ab}{c}+\frac{bc}{a}+\frac{bc}{a}+\frac{ac}{b}\ge2a+2b+2c\).
\(\Leftrightarrow2\left(\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\right)\ge2\left(a+b+c\right)\).
\(\Leftrightarrow\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}\ge a+b+c\).
\(\Leftrightarrow P\ge4\)(vì \(a+b+c=4\)).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=y+z=z+x\\x,y,z>0\end{cases}}\Leftrightarrow x=y=z\)
Mà \(x+y+z=2\)nên \(x=y=z=\frac{2}{3}\).
Vậy \(minP=4\Leftrightarrow x=y=z=\frac{2}{3}\).
Câu 3:
\(\frac{1}{3a+b}+\frac{2}{a+3b}=\frac{3}{2a+2b}\).
\(\Leftrightarrow\left[\frac{1}{3a+b}-\frac{1}{2\left(a+b\right)}\right]+2\left[\frac{1}{a+3b}-\frac{1}{2\left(a+b\right)}\right]=0\).
\(\Leftrightarrow\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(3a+b\right)}-\frac{3a+b}{2\left(a+b\right)\left(3a+b\right)}\right]\)\(+2\left[\frac{2\left(a+b\right)}{2\left(a+b\right)\left(a+3b\right)}-\frac{a+3b}{2\left(a+b\right)\left(a+3b\right)}\right]=0\).
\(\Leftrightarrow\frac{2a+2b-3a-b}{2\left(a+b\right)\left(3a+b\right)}+2.\frac{2a+2b-a-3b}{2\left(a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)\left(3a+b\right)}+\frac{2\left(a-b\right)}{2\left(a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-a}{2\left(a+b\right)}\left(\frac{1}{3a+b}-\frac{2}{a+3b}\right)=0\).
Vì \(0< a< b\)nên \(a+b>0;b-a>0\)\(\frac{b-a}{\left(a+b\right)}>0\Rightarrow\frac{b-a}{2\left(a+b\right)}>0\)\(\Rightarrow\frac{b-a}{2\left(a+b\right)}\ne0\). Lúc đó:
\(\frac{1}{3a+b}-\frac{2}{a+3b}=0:\frac{b-a}{2\left(a+b\right)}\).
\(\Leftrightarrow\frac{1}{3a+b}-\frac{2}{a+3b}=0\).
\(\Leftrightarrow\frac{a+3b}{\left(3a+b\right)\left(a+3b\right)}-\frac{2\left(3a+b\right)}{\left(3a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{a+3b-6a-2b}{\left(3a+b\right)\left(a+3b\right)}=0\).
\(\Leftrightarrow\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=0\).
Vì \(0< a< b\)nên \(3a+b>0;a+3b>0\)\(\Rightarrow\left(3a+b\right)\left(a+3b\right)>0\Rightarrow\left(3a+b\right)\left(a+3b\right)\ne0\).
Do đó:
\(\frac{b-5a}{\left(3a+b\right)\left(a+3b\right)}=\frac{0}{\left(3a+b\right)\left(a+3b\right)}\).
\(\Rightarrow b-5a=0\Leftrightarrow b=5a\)(thỏa mãn \(0< a< b\)).
\(M=\frac{3}{3a+b}+\frac{2}{a+3b}-\frac{3}{a+b}\).
Thay \(b=5a\)vào \(M\), ta được:
\(M=\frac{3}{3a+5a}+\frac{2}{a+3.5a}-\frac{3}{a+5a}\).
\(M=\frac{3}{8a}+\frac{2}{16a}-\frac{3}{6a}=\frac{3}{8a}+\frac{1}{8a}-\frac{1}{2a}=\frac{1}{4a}-\frac{1}{2a}\).\(=\frac{1}{2a}-\frac{1}{2a}=0\)
Vậy \(M=0\).
Ta có a + b + c = 6
=> (a + b + c)2 = 36
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 36
=> 12 + 2ab + 2bc + 2ca = 36
=> 2ab + 2bc + 2ca = 24
=> ab + bc + ca = 12
Khi đó a2 + b2 + c2 = ab + bc + ca (= 12)
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
=> a = b = c = 2
Khi đó A = (2 - 3)2021 + (2 - 3)2021 + (2 - 3)2021
= -1 + (-1) + (-1)
= -3