Cho tam giác ABC nhọn, các đường cao BD,CE. Tia phân giác của các góc ABD và ACE cắt nhau tại O, cắt AC và AB lần lượt tại N,M. Tia BN cắt CE tại K, tia CM cắt BD tại H. Chứng minh rằng.
a) BN vuông góc với CM.
b) tứ giác MNHK là hình thoi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm mẫu 1 phần :
a) \(|3x-1|+|x-1|=4\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(x-1=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
3x-1 x-1 1/3 1 0 0 - - - + + + +
+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)+\left(1-x\right)=4\)
\(2-4x=4\)
\(4x=-2\)
\(x=\frac{-1}{2}\)( chọn )
+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)+\left(x-1\right)=4\)
\(4x-2=4\)
\(4x=6\)
\(x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)
a) <=? |(x-1/4)| = 1/4-x
Th1: x >= 1/4 => x - 1/4 = 1/4 - x
<=> 2x = 2.1/4 <=> x = 1/4(nhân)
Th2: x<1/4 => -x + 1/4 = 1/4-x
<=> 0x = 0
<=> x thuộc R và x <1/4.
Vậy S ={x|x<=1/4}
\(\text{a)}\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)
\(\Leftrightarrow\sqrt{x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2}=\frac{1}{4}-x\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{4}\right)^2}=\frac{1}{4}-x\)
\(\Leftrightarrow x-\frac{1}{4}=\frac{1}{4}-x\)
\(\Leftrightarrow2x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
\(\text{b)}\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow\left(\sqrt{x-2\sqrt{x-1}}\right)^2=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow x-2\sqrt{x-1}=\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}-x+2\sqrt{x-1}=-1+1\)
\(\Leftrightarrow0x=0\)
Vậy \(S=\left\{x\inℝ|x\ge-2\right\}\)
Liên quan gì bạn @Tam Mai, chứng minh chứ không phải bấm máy tính
\(p=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}:\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}.\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)