Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n-1⋮2n+3\)
=>\(2n+3-4⋮2n+3\)
=>\(-4⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(2n\in\left\{-2;-4;-1;-5;1;-7\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};\dfrac{1}{2};-\dfrac{7}{2}\right\}\)
\(2n+1⋮n+5\)
=>\(2n+10-9⋮n+5\)
=>\(-9⋮n+5\)
=>\(n+5\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(n\in\left\{-4;-6;-2;-8;4;-14\right\}\)
Bài 2:
Vì \(\widehat{xOz}< \widehat{xOy}\left(50^0< 80^0\right)\)
nên tia Oz nằm giữa hai tia Ox,Oy
=>\(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)
=>\(\widehat{yOz}=80^0-50^0=30^0\)
Bài 4:
Ta có: \(\widehat{xEy}+\widehat{xEy'}=180^0\)(hai góc kề bù)
=>\(\widehat{xEy'}=180^0-50^0=130^0\)
Ta có: \(\widehat{xEy}=\widehat{x'Ey'}\)(hai góc đối đỉnh)
mà \(\widehat{xEy}=50^0\)
nên \(\widehat{x'Ey'}=50^0\)
Ta có: \(\widehat{xEy'}=\widehat{x'Ey}\)(hai góc đối đỉnh)
mà \(\widehat{xEy'}=130^0\)
nên \(\widehat{x'Ey}=130^0\)
Ta có:
\(-x^2+x-5\\ =-x^2+x-\dfrac{1}{4}+\dfrac{1}{4}-5\\ =-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}-5\\ =-\left[x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\right]-\dfrac{19}{4}\\ =-\left(x-\dfrac{1}{2}\right)^2-\dfrac{19}{4}\)
Nhận xét:
\(\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\\
\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0,\forall x\\
\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4},\forall x\)
hay \(-x^2+x-5\le-\dfrac{19}{4},\forall x\)
Dấu "=" xảy ra khi và chỉ khi:
\(x-\dfrac{1}{2}\\=0\\
\Rightarrow x=\dfrac{1}{2}\)
Vậy...
\(\left|x-2\right|>=0\forall x\)
\(\left|2x+y-z\right|>=0\forall x,y,z\)
\(\left|2z+1\right|>=0\forall z\)
Do đó: \(\left|x-2\right|+\left|2x+y-z\right|+\left|2z+1\right|>=0\forall x,y,z\)
mà \(\left|x-2\right|+\left|2x+y-z\right|+\left|2z+1\right|< =0\)
nên Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\2x+y-z=0\\2z+1=0\\\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\z=-\dfrac{1}{2}\\y=-2x+z=-2\cdot2+\dfrac{-1}{2}=-4-\dfrac{1}{2}=-\dfrac{9}{2}\end{matrix}\right.\)
\(372-19\cdot4+981:19-13\)
=372-76+981/19-13
\(=283+\dfrac{981}{19}=\dfrac{6358}{19}\)
Gọi vận tốc của người thứ hai là x(km/h)
(Điều kiện: x>0)
vận tốc của người thứ nhất là x+4(km/h)
Thời gian người thứ nhất đi từ A đến B là \(\dfrac{24}{x+4}\left(giờ\right)\)
Thời gian người thứ hai đi từ A đến B là \(\dfrac{24}{x}\left(giờ\right)\)
Người thứ nhất đến sớm hơn người thứ hai 30p=0,5 giờ nên ta có:
\(\dfrac{24}{x}-\dfrac{24}{x+4}=0,5\)
=>\(\dfrac{48}{x}-\dfrac{48}{x+4}=1\)
=>\(\dfrac{48x+192-48x}{x^2+4x}=1\)
=>\(x^2+4x=192\)
=>\(x^2+4x-192=0\)
=>(x+16)(x-12)=0
=>\(\left[{}\begin{matrix}x=-16\left(loại\right)\\x=12\left(nhận\right)\end{matrix}\right.\)
Vậy: vận tốc của người thứ hai là 12km/h
vận tốc của người thứ nhất là 12+4=16km/h
kẻ CM//a và DN//bB(CM và Aa nằm cùng phía với nửa mặt phẳng chứa tia AC, DN và Bb nằm khác phía với nửa mặt phẳng chứa tia DB
CM//Aa
=>\(\widehat{MCA}=\widehat{A_1}\)
Ta có: CM//a
DN//b
mà a//b
nên CM//DN//a//b
CM//DN
=>\(\widehat{MCD}=\widehat{CDN}\)
DN//Bb
=>\(\widehat{NDB}=\widehat{B_1}\)
Ta có: \(\widehat{ACD}=\widehat{ACM}+\widehat{CDM}=\widehat{CDN}+\widehat{B_1}\)
\(\widehat{CDB}=\widehat{CDN}+\widehat{NDB}=\widehat{CDN}+\widehat{B_1}\)
Do đó: \(\widehat{ACD}=\widehat{CDB}\)