Cho M = ( \(\dfrac{1}{x^2+1}-\dfrac{x+1}{x^4-1}\)) : \(\dfrac{x+1}{x^5+x^4-x-1}\)
a, Rút gọn C
b, Tìm x để C = 0
c, Tìm GTNN của C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^2+a+1=\left(a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall a\)
\(\Rightarrow\)PT đã cho vô nghiệm
Vậy không có giá trị \(a\) thỏa mãn \(P=a^{2014}+\dfrac{1}{a^{2014}}\)
Bài 1:
AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)
=>\(2\widehat{D}+\widehat{D}=180^0\)
=>\(3\cdot\widehat{D}=180^0\)
=>\(\widehat{D}=60^0\)
\(\widehat{A}=2\cdot60^0=120^0\)
AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}+\widehat{C}+40^0=180^0\)
=>\(2\cdot\widehat{C}=180^0-40^0=140^0\)
=>\(\widehat{C}=70^0\)
\(\widehat{B}=70^0+40^0=110^0\)
Bài 2:
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
\(\widehat{ADH}=\widehat{BCK}\)
Do đó: ΔAHD=ΔBKC
=>DH=CK
a: Ta có: \(BF=FC=\dfrac{BC}{2}\)
\(AE=ED=\dfrac{AD}{2}\)
mà BC=AD
nên BF=FC=AE=ED
Xét tứ giác BFDE có
BF//DE
BF=DE
Do đó: BFDE là hình bình hành
=>EB=DF(3)
b: Ta có: BFDE là hình bình hành
=>BD cắt FE tại trung điểm của mỗi đường
mà O là trung điểm của FE
nên O là trung điểm của BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của AC
=>AC,BD,EF đồng quy tại O
c: Xét ΔABD có
BE,AO là các đường trung tuyến
BE cắt AO tại I
Do đó: I là trọng tâm của ΔABD
=>\(BI=\dfrac{2}{3}BE\left(1\right)\)
Xét ΔDBC có
DF,CO là các đường trung tuyến
DF cắt CO tại K
Do đó: K là trọng tâm của ΔDBC
=>\(DK=\dfrac{2}{3}DF\left(2\right)\)
Từ (1),(2),(3) suy ra BI=DK
Xét tứ giác BIDK có
BI//DK
BI=DK
Do đó: BIDK là hình bình hành
=>BK=DI
Xét ΔBCI có
F là trung điểm của CB
FK//BI
Do đó: K là trung điểm của CI
=>CK=KI
Xét ΔAKD có
E là trung điểm của AD
EI//KD
Do đó: I là trung điểm của AK
=>AI=IK
Do đó: AI=IK=KC
\(499^2+499+500\)
\(=\left(500-1\right)^2+\left(500-1\right)+500\)
\(=500^2-2.100+1+500-1+500\)
\(=500^2=2500\)
\(499^2+499+500\)
\(=499^2+499+\left(499+1\right)\)
\(=499^2+2.499+1\)
\(=\left(499+1\right)^2\)
\(=500^2\)
\(=2500\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(C=\left(\dfrac{1}{x^2+1}-\dfrac{x+1}{x^4-1}\right):\dfrac{x+1}{x^5+x^4-x-1}\)
\(=\dfrac{x^2-1-x-1}{\left(x^2+1\right)\left(x^2-1\right)}:\dfrac{x+1}{x^4\left(x+1\right)-\left(x+1\right)}\)
\(=\dfrac{x^2-x-2}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x^4-1\right)}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^4-1}{1}\)
=(x-2)(x+1)
b: Để C=0 thì (x-2)(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
c: \(C=\left(x-2\right)\left(x+1\right)=x^2-x-2\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)