K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P\ge\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinP = 18

10 tháng 5 2021

Vì \(a,b,c,d>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:\

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}\).

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}a^4=b^4=c^4=d^4\\a,b,c,d>0\end{cases}}\Leftrightarrow a=b=c=d>0\).

Mà theo đề bài,  ta có:\(a^4+b^4+c^4+d^4=4abcd\)

Nên dấu bằng của bất đẳng thức (1) đã xảy ra.

Do đó \(a=b=c=d\).

Vậy nếu \(a^4+b^4+c^4+d^4=4abcd\)với \(a,b,c,d>0\)thì \(a=b=c=d\).

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người đi xe máy...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

7 tháng 5 2021

a) Vì tứ giác ABCD là hình thang vuông 

=> AB song song CD

=> góc ABD = góc BDC

Xét tam giác ABD và tam giác BDC có:

góc BAD = góc CBD (=90*)

Góc ABD = Góc BDC ( cmt)

=> tam giác ABD đồng dạng tam giác BDC (g.g)

b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:

  BD2 = AB2 + AD2

=> BD2 = 4+ 32

=> BD= 25

=> BD = 5 (cm)

Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)

=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)

=> 4/5 = 5/DC

=> DC = 6,25

8 tháng 5 2021

c) Kẻ \(AH\perp BD\).

Dẽ thấy:  \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).

Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).

Và E là giao điểm của AC và BD.

\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).

\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).

\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).

Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).

a, Xét tam giác AHE và ABH có :

\(+,\widehat{AEH}=\widehat{AHB}=90^0\)

\(+,\widehat{HAB}chung\)

Vậy tam giác \(AHE~ABH\left(g.g\right)\)

b,

Theo hệ thức lượng trong tam giác vuông ta có :

\(AH^2=AE.AB=AF.AC\)

Vậy \(\frac{AE}{AC}=\frac{AF}{AB}\left(1\right)\)

Xét tam giác AEF và ACB có :

\(+,\)góc A chung

\(+,\left(1\right)\)

\(\Rightarrow\Delta AEF~ACB\left(c.g.c\right)\)

c, Tự làm nhé

7 tháng 5 2021

chịu thôi

7 tháng 5 2021

chịu rồi

7 tháng 5 2021

Ta có: 

\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)

Tương tự CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1}\) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\cdot1=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

7 tháng 5 2021

A=\(\frac{1}{a^2+2b^2+3}\)+\(\frac{1}{b^2+2c^2+3}\)+\(\frac{1}{c^2+2a^2+3}\)

ta có: \(\frac{1}{a^2+2b^2+3}\)=\(\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\)\(\le\)\(\frac{1}{2\left(ab+b+1\right)}\)

vì : a2+b2\(\ge\)2\(\sqrt{a^2b^2}\)=2ab

b2+1\(\ge\)2\(\sqrt{b^2x1}\)=2b

cmtt => A\(\le\)\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{1}{bc+c+1}\)+\(\frac{1}{ca+a+1}\))

=\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab^2c+abc+ab}\)+\(\frac{b}{cba+ab+b}\))

=\(\frac{1}{2}\)x (\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab+b+1}\)+\(\frac{b}{ab+b+1}\))=\(\frac{1}{2}\)x\(\frac{ab+b+1}{ab+b+1}\)=\(\frac{1}{2}\)

dấu "=" xảy ra <=> a=b=c=1

6 tháng 5 2021

Đáp án: 2552 cm2

ta có: diện tích đáy lớn là: 16x16=256 cm2

diện tích đáy nhỏ là:  13 x 16 = 208 cm2

trung bình cộng diện tích 2 đáy là: \(\frac{256+208}{2}=232\left(cm^2\right)\)

=> V = 232 x 11 =2552 (cm3)

Vậy...

6 tháng 5 2021

 Sđáy  = (13 + 16) x 11 : 2 = 159.5 cm2

\(V_{\text{lăng trụ đứng}}=S_{\text{đáy}}.h=159,5.16=2552\left(cm^3\right)\)