CÁC BẠN LÀM TỪ BÀI 2 ĐẾN BÀI 5 THÔI NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\dfrac{3}{8}+5\dfrac{2}{3}\)
\(=4+5+\dfrac{3}{8}+\dfrac{2}{3}\)
\(=9+\dfrac{9}{24}+\dfrac{16}{24}\)
\(=9+\dfrac{25}{24}\)
\(=10\dfrac{1}{24}\)
\(4\dfrac{3}{8}+5\dfrac{2}{3}\)
\(=\dfrac{35}{8}+\dfrac{17}{3}\)
\(=\dfrac{105}{24}+\dfrac{136}{24}\)
\(=\dfrac{241}{24}\)
\(\dfrac{1}{5}.\left(x+2\right)^2+\dfrac{1}{3}.\left(2x-2\right)^3=\dfrac{1}{5}.\left(x+2\right)^2+\dfrac{1}{3}.2^3\)
\(\Rightarrow\left(2x-2\right)^3=2^3\)
\(\Rightarrow2x-2=2\)
\(\Rightarrow2x=2+2\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4\div2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
`1/5 . (x+2)^2 + 1/3 . (2x - 2)^3 = 1/5 . (x+2)^2 + 1/3 . 2^3`
`<=> 1/5 . (x+2)^2 - 1/5 . (x+2)^2+ 1/3 . (2x - 2)^3 = 1/3 . 2^3`
`<=> 0 + 1/3 . (2x - 2)^3 = 1/3 . 2^3`
`<=> 1/3 . (2x - 2)^3 = 1/3 . 2^3`
`<=> 1/3 : 1/3 . (2x - 2)^3 = 2^3`
`<=> 1 . (2x - 2)^3 = 2^3`
`<=> (2x - 2)^3 = 2^3`
`<=> 2x - 2 = 2`
`<=> 2x = 2+2 `
`<=> 2x = 4`
`<=> x = 4 : 2`
`<=> x = 2`
Vậy `x = 2`
`A= (x+5)/(x+3 )`
Điều kiện: `x ≠ -3`
Do `x ∈ Z => x + 5` và `x + 3∈ Z`
Để `A ∈ Z <=> x + 5 ⋮x + 3`
`<=> x + 3 + 2 ⋮ x + 3`
Do `x + 3 ⋮ x + 3`
Nên `2 ⋮ x + 3`
`=> x + 3 ∈ Ư(2) =` {`-2;-1;1;2`}
`=> x ∈` {`-5;-4;-2;-1`} (Thỏa mãn)
Vậy ...
------------------------------
`B =(x-2)/(x+1)`
Điều kiện: `x ≠ -1`
Do `x ∈ Z => x -2` và `x + 1 ∈ Z`
Để `B ∈ Z <=> x -2 ⋮x + 1`
`<=> x + 1 - 3 ⋮x + 1`
Do `x + 1 ⋮x + 1`
Nên `3⋮x + 1`
`=> x + 1 ∈ Ư(3) =` {`-3;-1;1;3`}
`=> x ∈` {`-4;-2;0;2`} (Thỏa mãn)
Vậy ...
\(A=\dfrac{x+5}{x+3}\in Z\)
\(\Rightarrow\left(x+5\right)⋮\left(x+3\right)\)
Mà \(\left(x+3\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x+5\right)-\left(x+3\right)⋮\left(x+3\right)\)
\(\Rightarrow2⋮\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(x+3\right)\in\left\{1;-1;-2;2\right\}\)
Ta có bảng giá trị:
\(x+3\) | 1 | -1 | 2 | -2 |
\(x\) | -2 | -4 | -1 | -5 |
Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)
Những câu còn lại, cách làm tương tự, nếu như còn thắc mắc thì bạn tag mình nhé.
a: AF//BE
AF\(\perp\)AC
Do đó: BE\(\perp\)AC
b: Vì \(\widehat{F}=\widehat{EDC}\left(=75^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//CD
mà AF\(\perp\)AB
nên CD\(\perp\)AB
=>\(\widehat{C_1}=90^0\)
Ta có: BE//AF
=>\(\widehat{E_2}=\widehat{F}=75^0\)
Ta có: \(\widehat{E_1}+\widehat{E_2}=180^0\)(hai góc kề bù)
=>\(\widehat{E_1}=180^0-75^0=105^0\)
Vì BE\(\perp\)AC
nên \(\widehat{B_1}=90^0\)
(\(x+1\))(y + 1) = 6
Lập bảng ta có:
\(x+1\) | - 6 | -3 | - 2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | - 7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
y + 1 | - 1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | 5 | 2 | 1 | 0 | ||||
\(x;y\) \(\in\) | loại | loại | loại | loại | TM | TM | TM | TM |
Theo bảng trên ta có
(\(x;y\)) = (0; 5); (1; 2); (2; 1); (5; 0)
\(0< 25^0< 90^0\Rightarrow cos25^0>0\)
\(\Rightarrow cos25^0=\sqrt{1-sin^225^0}=\sqrt{1-a^2}\)
\(tan25^0=\dfrac{sin25^0}{cos25^0}=\dfrac{a}{\sqrt{1-a^2}}\)
\(cot25^0=\dfrac{1}{tan25^0}=\dfrac{\sqrt{1-a^2}}{a}\)
a: AG\(\perp\)AB
BD\(\perp\)AB
Do đó: AG//BD
b: Ta có: \(\widehat{FEB}=\widehat{FAC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//AC
c: Vì \(\widehat{CHD}=\widehat{HDG}\left(=65^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên CF//DG
d: Ta có: \(\widehat{EAC}+\widehat{BAC}=\widehat{EAB}\)
=>\(\widehat{A_2}=90^0-45^0=45^0\)
Ta có: \(\widehat{EAC}=\widehat{BAC}\left(=45^0\right)\)
mà tia AC nằm giữa hai tia AB,AE
nên AC là phân giác của góc BAE
e: Xét ΔABC vuông tại B có \(\widehat{BAC}=45^0\)
nên ΔBAC vuông cân tại B
=>\(\widehat{C_1}=\widehat{A_2}=45^0\)
f: AC//ED
=>\(\widehat{C_2}=\widehat{CHD}\)(hai góc so le trong)
=>\(\widehat{C_2}=65^0\)
Ta có: \(\widehat{C_1}+\widehat{C_2}+\widehat{C_3}=180^0\)
=>\(\widehat{C_3}=180^0-65^0-45^0=70^0\)
FE//CD
=>\(\widehat{F_1}=\widehat{C_3}\)(hai góc so le trong)
=>\(\widehat{F_1}=70^0\)
CF//GD
=>\(\widehat{G_1}=\widehat{F_1}\)
=>\(\widehat{G_1}=70^0\)
Bài 4:
a: \(216x^3+27y^3=27\left(8x^3+y^3\right)\)
\(=27\left[\left(2x\right)^3+y^3\right]\)
\(=27\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
b: \(64a^3-8=8\left(8a^3-1\right)\)
\(=8\left[\left(2a\right)^3-1^3\right]\)
\(=8\left(2a-1\right)\left(4a^2+2a+1\right)\)
c: \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+4\right)\)
d: \(27x^3-8y^3=\left(3x\right)^3-\left(2y\right)^3\)
\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
Bài 5:
a: \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)
\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)
\(=2y^2-10xy\)
b: \(\left(x-y\right)^3-3\left(x-y\right)^2\cdot x+3\left(x-y\right)\cdot x^2-x^3\)
\(=\left(x-y-x\right)^3\)
\(=\left(-y\right)^3=-y^3\)
c: \(\left(3x+3\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)
\(=27\left(x+1\right)^3-2\left(x+1\right)^3-\left(5x-1\right)^2\)
\(=25\left(x+1\right)^3-25x^2+10x-1\)
\(=25x^3+75x^2+75x+25-25x^2+10x-1\)
\(=25x^3+50x^2+85x+24\)
d: \(\left(-2x+3\right)^3-\left(x+1\right)^3+\left(3x-1\right)^2\)
\(=\left(-2x+3-x-1\right)\left[\left(-2x+3\right)^2+\left(-2x+3\right)\left(x+1\right)+\left(x+1\right)^2\right]+\left(3x-1\right)^2\)
\(=\left(-3x+2\right)\left(4x^2-12x+9-2x^2+x+3+x^2+2x+1\right)+\left(3x-1\right)^2\)
\(=\left(-3x+2\right)\left(3x^2-9x+13\right)+\left(3x-1\right)^2\)
\(=-9x^3+27x^2-39x+6x^2-18x+26+9x^2-6x+1\)
\(=-9x^3+42x^2-63x+27\)