x(x+y)+4x+4y
phân tích đa thức thành nhân tử giúp mk vs ..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để $(d)$ đi qua gốc tọa độ $O(0;0)$ thì:
$y_O=(m-1)x_O+2m-1$
$\Leftrightarrow 0=(m-1).0+2m-1\Leftrightarrow m=\frac{1}{2}$
b.
$(d)$ cắt trục tung tại điểm có tung độ $3$, tức là $(d)$ đi qua $(0;3)$
Điều này xảy ra khi $3=(m-1).0+2m-1\Leftrightarrow 2m-1=3$
$\Leftrightarrow m=2$
c.
$(d)$ cắt trục hoành tại điểm có hoành độ $-1$, tức là $(d)$ đi qua $(-1;0)$
Điều này xảy ra khi $0=(m-1)(-1)+2m-1$
$\Leftrightarrow 0=2m-1-(m-1)=m$
$\Leftrightarrow m=0$
a) Thay tọa độ điểm M(0; 5) vào đường thẳng, ta có:
\(m.0+5=5\)
Vậy đường thẳng đã cho luôn đi qua điểm M(0; 5) với mọi giá trị của m
b) Thay tọa độ điểm P(2; 2021) vào đường thẳng, ta có:
\(\left(2m-1\right).2-4m+2023=4m-2-4m+2023=2021\)
Vậy đường thẳng đã cho luôn đi qua P(2; 2021) với mọi giá trị của m
a) Thay tọa độ điểm A(-1; 3) vào hàm số, ta có:
\(\left(m-1\right).\left(-1\right)+2=3\)
\(\Leftrightarrow-m+1+2=3\)
\(\Leftrightarrow-m=3-1-2\)
\(\Leftrightarrow m=0\)
\(\Rightarrow y=-x+2\)
b)
\(x\) | \(0\) | \(2\) |
\(y=-x+2\) | \(2\) | \(0\) |
Đồ thị:
y³ - 8 - 6y(y - 2)
= (y³ - 8) - 6y(y - 2)
= (y - 2)(y² + 2y + 4) - 6y(y - 2)
= (y - 2)(y² + 2y + 4 - 6y)
= (y - 2)(y² - 4y + 4)
= (y - 2)(y - 2)²
= (y - 2)³
y³ - 8 - 6y(y - 2)
= (y³ - 8) - 6y(y - 2)
= (y - 2)(y² + 2y + 4) - 6y(y - 2)
= (y - 2)(y² + 2y + 4 - 6y)
= (y - 2)(y² - 4y + 4)
= (y - 2)(y - 2)²
P = \(\dfrac{2x+3}{x+3}\) (đk \(x\ne\) - 3; \(x\in\) Z-
P \(\in\) Z ⇔ 2\(x\) + 3 ⋮ \(x\) + 3
2\(x\) + 6 -3 ⋮ \(x\) + 3
2.(\(x\) + 3) - 3 ⋮ \(x\) + 3
3 \(⋮\) \(x\) + 3
\(x\) + 3 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(x\) + 3 | - 3 | -1 | 1 | 3 |
\(x\) | -6 | -4 | -2 | 0 |
Vì \(x\) \(\in\) Z- nên theo bảng trên ta có:
\(x\) \(\in\) {- 6; - 4; -2}
Lời giải:
b. Ta thấy: $5^2+12^2=13^2$ hay $AB^2+AC^2=BC^2$ nên tam giác $ABC$ vuông tại $A$.
Tứ giác $ACEB$ có 2 đường chéo $BC,AE$ cắt nhau tại trung điểm $D$ của mỗi đường nên là hình bình hành.
Mà $\widehat{A}=90^0$ nên $ACEB$ là hình chữ nhật.
a.
$ACEB$ là hcn nên $AE=BC=13$ (cm)
$\Rightarrow AD=AE:2=13:2=6,5$ (cm)
c.
Để $ABEC$ là hình vuông thì $AB=AC$. Khi đó $ABC$ phải là tam giác vuông cân tại A chứ không liên quan gì đến điểm D hết bạn nhé.
$x(x+y)+4x+4y$
$=x(x+y)+4(x+y)$
$=(x+y)(x+4)$