Chứng minh rằng 99\(^{\text{n}}\) + 99\(^{\text{n + 1}}\)chia hết cho 100 (n là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 2x2 + 12x + 9
= 2x2 + 12x + 18 - 9
= 2( x2 + 6x + 9 ) - 9
= 2( x + 3 )2 - 9 ≥ -9 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinP = -9 <=> x = -3
\(P=2x^2+12x+9=2\left(x^2+6x+9\right)-9\)
\(=2\left(x+3\right)^2-9\)
Vì \(2\left(x+3\right)^2\ge0\forall x;2\left(x+3\right)^2-9\ge-9\forall x\)
Vậy GTNN là -9 <=> x + 3 = 0 <=> x = -3
\(\frac{1-4x^2}{x^2+4x}\div\frac{2-4x}{3x}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-4\\x\ne\frac{1}{2}\end{cases}}\)
\(=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\times\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1+2x\right)}{2x\left(x+4\right)}\)
\(=\frac{3\left(1+2x\right)}{2\left(x+4\right)}=\frac{6x+3}{2x+8}\)
\(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)
\(=\left(x^2+4x\right)\left(x^2+16x+60\right)+128\)
\(=x^4+16x^3+60x^2+4x^3+64x^2+240x+128\)
\(=x^4+20x^3+124x^2+240x+128\)
x( x + 4 )( x + 6 )( x + 10 ) + 128
= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128
= ( x2 + 10x )( x2 + 10x + 24 ) + 128
Đặt t = x2 + 10x
= t( t + 24 ) + 128
= t2 + 24t + 128
= t2 + 8t + 16t + 128
= t( t + 8 ) + 16( t + 8 )
= ( t + 8 )( t + 16 )
= ( x2 + 10x + 8 )( x2 + 10x + 16 )
= ( x2 + 10x + 8 )( x2 + 2x + 8x + 16 )
= ( x2 + 10x + 8 )[ x( x + 2 ) + 8( x + 2 ) ]
= ( x2 + 10x + 8 )( x + 2 )( x + 8 )
Bài 1 :
a, sai đề
b, \(\frac{x^2-xy-x+y}{x^2+xy-x-y}=\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\frac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}=\frac{x-y}{x+y}\)
Bài 2 :
a, \(\frac{3x-7x}{3x-5x}-\frac{4x-7}{3x-5}=2-\frac{4x-7}{3x-5}=\frac{2\left(3x-5\right)-4x-7}{3x-5}\)
\(=\frac{6x-10-4x-7}{3x-5}=\frac{2x-17}{3x-5}\)
b, \(\frac{x^3-1}{x^3+x^2+x}-\frac{x^2-4}{6y-3xy}=\frac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{3y\left(2-x\right)}\)
\(=\frac{x-1}{x}-\frac{-\left(2-x\right)\left(x+2\right)}{3y\left(2-x\right)}=\frac{x-1}{x}+\frac{x+2}{3y}\)
Ta có : 99n + 99n + 1 = 99n + 99n.99 = 99n(99 + 1) = 99n . 100\(⋮\)100 (đpcm)