cho hàm số y=f(x)=ax^2+bx+c. cho biết f(0)=2014;f(1)=2015;f(-1)=2017. tính f(-2)
giúp tui đi mà các tiền bối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm là \(y=mx^2-\left(m^2+1\right)x+3\) đúng không nhỉ?
- Với \(m=0\) hàm nghịch biến trên R (không thỏa)
- Với \(m\ne0\) hàm số đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m^2+1}{2m}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m^2+1\le2m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)^2\le0\end{matrix}\right.\)
\(\Rightarrow m=1\)
đt△ x + 4y - 2 = 0 => y = -\(\dfrac{1}{4}\)x + \(\dfrac{1}{2}\)
Đt d có dạng y = ax + b vì (d) //Δ nên a = -\(\dfrac{1}{4}\); b # \(\dfrac{1}{2}\)
đt (d) có dạng y = \(-\dfrac{1}{4}\) x + b ⇒x+ 4y - 4b = 0
Khoảng cách từ A(-2;3) đến đường thẳng (d) là :
d(A;d) = \(\dfrac{|-2+4.3-4b|}{\sqrt{1^2+4^2}}\) = 3
| 10 - 4b| = 3\(\sqrt{17}\)
10- 4b = 3\(\sqrt{17}\)
b = \(\dfrac{10-3\sqrt{17}}{4}\)
4b - 10 = 3\(\sqrt{17}\)
b = \(\dfrac{10+3\sqrt{17}}{4}\)
pt đt d thỏa mãn đề bài là:
y = - \(\dfrac{1}{4}\) x + \(\dfrac{10-3\sqrt{17}}{4}\) hoặc y = \(-\dfrac{1}{4}\) x + \(\dfrac{10+3\sqrt{17}}{4}\)
a) A(3;-5) ; B(1;0)
=> \(\overrightarrow{AB}\left(-2;5\right)\)
Gọi C(x;y) tọa độ cần tìm
khi đó \(\overrightarrow{OC}\left(x;y\right)\)
\(\overrightarrow{OC}=-3\overrightarrow{AB}\Leftrightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-3.5=-15\end{matrix}\right.\)
Vậy C(6;-15)
b) D đối xứng với A qua C
=> C trung điểm AD
Gọi D(x1;y1)
Ta có : \(6=\dfrac{3+x_1}{2}\Leftrightarrow x_1=9\)
\(-15=\dfrac{-5+y_1}{2}\) <=> y1 = -25
Vậy D(9;-25)
ĐKXĐ : \(\left\{{}\begin{matrix}2x^2+5\ge0\\x^2-x+11\ge0\end{matrix}\right.\Leftrightarrow\forall x\inℝ\)
\(\sqrt{2x^2+5}=\sqrt{x^2-x+11}\)
<=> 2x2 + 5 = x2 - x + 11
<=> x2 + x - 6 = 0
<=> (x - 2)(x + 3) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Tập nghiệm phương trình S = {2;-3}
Theo đề bài, giá bán \(x\) sản phẩm là \(170x\) (nghìn đồng)
Để nhà sản xuất không bị lỗ thì \(P\left(x\right)\le170x\) \(\Leftrightarrow x^2+30x+3300\le170x\) \(\Leftrightarrow x^2-140x+3300\le0\) \(\Leftrightarrow\left(x-110\right)\left(x-30\right)\le0\)
Đặt \(f\left(x\right)=\left(x-110\right)\left(x-30\right)\). Ta lập bảng xét dấu:
\(x\) | \(-\infty\) \(30\) \(110\) \(+\infty\) |
\(f\left(x\right)\) | \(+\) \(0\) \(-\) \(0\) \(+\) |
Vậy \(f\left(x\right)\le0\Leftrightarrow x\in\left[30;110\right]\). Do đó, để nhà sản xuất không bị lỗ thì số sản phẩm được sản xuất trong đoạn \(\left[30;110\right]\).
Khi bán hết �x sản phẩm thì số tiền thu được là: 170�170x (nghìn đồng).
Điều kiện để nhà sản xuất không bị lỗ là 170�≥�2+30�+3300⇔�2−140�+3300≤0170x≥x2+30x+3300⇔x2−140x+3300≤0.
Xét �2−140�+3300=0⇒�=30x2−140x+3300=0⇒x=30 hoặc �=110x=110.
Bảng xét dấu �(�)=�2−140�+3300f(x)=x2−140x+3300:
∞!aaaaa + ∞ − + ∞ − xf(x)00 + 30110
Ta có: �2−140�+3300≤0⇔�∈[30;110]x2−140x+3300≤0⇔x∈[30;110].
Vậy nếu nhà sản xuất làm ra từ 3030 đến 110110 sản phẩm thì họ sẽ không bị lỗ.
a) Tọa độ vector pháp tuyến của đường BC là \(\overrightarrow{n_{BC}}=\left(1;-1\right)\)
\(\Rightarrow\) Tọa độ vector pháp tuyến của đường AH là \(\overrightarrow{n_{AH}}=\left(1;1\right)\)
\(\Rightarrow AH:x+y+m=0\) với \(m\inℝ\)
Mà AH đi qua A nên tọa độ điểm A thỏa mãn pt đường thẳng AH \(\Rightarrow-1-2+m=0\) \(\Leftrightarrow m=3\)
Vậy \(AH:x+y+3=0\)
b) Gọi d là đường thẳng chứa đường trung bình ứng với cạnh BC của tam giác ABC. Khi đó \(d//BC\) nên \(\overrightarrow{n_{BC}}=\overrightarrow{n_d}=\left(1;-1\right)\) (với \(\overrightarrow{n_d}\) là vector pháp tuyến của đường thẳng d) \(\Rightarrow d:x-y+n=0\) \(\left(n\inℝ\right)\)
Mặt khác, tọa độ H là nghiệm của hệ \(\left\{{}\begin{matrix}x-y+4=0\\x+y+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{7}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow H\left(-\dfrac{7}{2};\dfrac{1}{2}\right)\)
Gọi \(I\left(x_I;y_I\right)\) là trung điểm AH \(\Rightarrow\) \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_H}{2}=\dfrac{-1-\dfrac{7}{2}}{2}=-\dfrac{9}{4}\\y_I=\dfrac{y_A+y_H}{2}=\dfrac{-2+\dfrac{1}{2}}{2}=-\dfrac{3}{4}\end{matrix}\right.\)
Do d là đường trung bình ứng với cạnh BC của tam giác ABC nên d đi qua trung điểm I của đường cao AH \(\Rightarrow-\dfrac{9}{4}-\left(-\dfrac{3}{4}\right)+n=0\) \(\Leftrightarrow n=\dfrac{3}{2}\) \(\Rightarrow d:x-y+\dfrac{3}{2}=0\)
+ Bước 1: Chọn 2 học sinh khối C, 13 học sinh khối B hoặc khối A có C25C1325C52C2513 cách.
+ Bước 2: Chọn 2 học sinh khối C, 13 học sinh khối B và khối A không thỏa mãn yêu cầu.
- Trường hợp 1: Chọn 2 học sinh khối C, 10 học sinh khối B và 3 học sinh khối A có C25C1010C315C52C1010C153 cách.
- Trường hợp 2: Chọn 2 học sinh khối C, 9 học sinh khối B và 4 học sinh khối A có C25C910C415C52C109C154 cách.
Vậy có C25(C1325−C1010C315−C910C415)=51861950C52C2513−C1010C153−C109C154=51861950 cách.
f(0)=2014=a.0^2+b.0+c=c => c=2014
f(1)=2015= a.1^2+b.1+c = a+b+c=a+b+2014 => a+b=2015-2014=1 (*)
f(-1)=2017=a.(-1)^2+b.(-1)+c= a-b+c=a-b+2014 =>a-b=2017-2014=3(**)
từ (*) và (**) ta có hệ pt và tính được a=2 và b= -1
=> f(-2) = 2.(-2)^2 + (-1).(-2) +2014=2024
F(0) = a.02 + b. 0 + c = 2014 => c = 2014
F(1) = a.12 + b. 1+ 2014 = 2015 => a + b = 2015 - 2014 = 1
F(-1) = a.(-1)2 + b.(-1) + 2014 = 2017 = > a - b = 2017 - 2014 = 3
Cộng vế cho vế ta được : 2a = 1 + 3 = 4=> a = 4/2 =2
thay a = 2 vào a + b = 1 ta có
2 + b = 1 => b = -1
F(x) = 2x2 - x + 2014
Vậy F(-2) = 2. (-2)2 - (-2) + 2014 = 2024