Phân tích đa thức thành nhân tử:
4x2+4x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)a) \(3x^4y^2-6x^3y^3+x^2y^4=x^2y^2\left(3x^2-6xy+y^2\right)\)
b) \(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)
d) \(4x^2+4x-3=4x^2-2x+6x-3=2x\left(2x-1\right)+3\left(2x-1\right)=\left(2x+3\right)\left(2x-1\right)\)
c) \(3x^2-15x=3x\left(x-5\right)\)
e) \(x^2-10x+21=x^2-3x-7x+21=x\left(x-3\right)-7\left(x-3\right)=\left(x-3\right)\left(x-7\right)\).
f) \(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(2x+7\right)\left(4x+1\right)\)
Ta có: A= (3x^4 + 3x^2 + x^3 + x -3x^2 - 3) + 5x + 3
= [3x^2(x^2 + 1) + x(x^2 + 1) -3(x^2 + 1)] + 5x +3
= (x^2 + 1)(3x^2 + x - 3) + 5x +3
= B.(3x^2 + x - 3) + 5x +3
Vậy R = 5x + 3
4x(4x+1)-3
\(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=\left(4x^2+6x\right)-\left(2x+3\right)\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)