Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\):\(\frac{c}{d}\)= \(\frac{ad}{bc}\)
vạy khi ad chia hêt cho bc thi x/y nguyen
x/y=a/b.d/c=ad/bc
x/y \(\in\)Z\(\Leftrightarrow\)ad chia hết cho bc
Ta có: C = (2x - 3 ) ( 4 + 3x)
= (2x-3).4 + (2x-3).3x
= 8x - 12 + 30x - 9x
= 29x - 12
Vậy giá trị nhỏ nhất là : x = 0 ; C = -12
Ta có : C = ( 2x-3)(4+3x)
= (2x-3).4 + (2x-3)
= 8x - 12 + 30x - 9x
= 29x -12
Vậy giá trị nhỏ nhất là : x = 0 ; c = -12
Ban tự vẽ hình nha, mk ko biết up hình lên đây
a) Ta thấy: Tam giác ABC cân tại C (CA = CB)
Xét 2 tg vuông ACI và tg vuông BCI có:
CA = CB (gt)
góc CAI = góc CBI (tg ABC cân tại C)
=> tg ACI = tg BCI (cạnh huyền - góc nhọn)
=> IA = IB (2 cạnh tương ứng)
b) Ta có: IA = IB = 1/2,AB = 1/2.12 = 6 (cm)
Áp dụng định lí Pitago vào tg vuông ACI, có:
\(CA^2=IA^2+IC^2\)
\(\Rightarrow IC^2=CA^2-IA^2\)
\(\Rightarrow IC^2=10^2-6^2=64\)
\(\Rightarrow IC=8\)
Vậy IC = 8 (cm)
c) Xét 2 tg vuông CHI và tg vuông CKI có:
CI là cạnh chung
góc HCI = góc KCI (2 góc tương ứng do tg ACI = tg BCI)
=> tg CHI = tg CKI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Trong tg vuông ACI, ta có:
\(S\Delta ACI=\frac{IH.CA}{2}=\frac{CI.IA}{2}\)
\(\Rightarrow IH.CA=CI.IA\)
\(\Rightarrow IH=\frac{CI.IA}{CA}=\frac{8.6}{10}=\frac{48}{10}=4,8\)
Vậy IH = IK = 4,8 (cm)
a, Xét tg IAC và tg IBC vuông tại I
Ta có : AC=BC(gt)
AC cạnh chung
Nên : tg IAC = tg IBC
Vậy : IA=IB (đpcm)
b, Ta có : I là giao điểm của AB vì : IA=IB (cmt)
=> IA=IB=12.1/2=6
+Áp dụng định lý pi-ta-go có :
IB2+IC2=BC2
62+IC2=102
IC2 =102-62
IC2 =8
Vậy : IC=8
c, k bt lm
A=x2+2x+2=x2+2.x.1+12+1=(x+1)2+1
Vì\(\left(x+1\right)^2\ge0\)=>(x+1)2+1>0
=> A >0 =>A vô nghiệm (đpcm)
Ta có: A = x^2 + 2x +2
= x^ 2 +x + x +1 + 1
= (x^2 + x) + (x+1) + 1
= x(x+1) + (x+1) + 1
= (x+1)(x+1) + 1
= (x+1)^2 +1
Vì (x+1)^2 \(\ge\) 0 (với mọi x) nên (x+1)^2 + 1 \(\ge\)1 > 0 (với mọi x)
Vậy đa thức A ko có nghiệm
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
đề sai ???
Để chiều mk " xử" bài này cho