K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài giải

số học sinh lớp 8A là:

85 : ( 7 + 10 ) x 7 + 5 = 40 ( học sinh )
số học sinh lớp 8B là:

85 - 40 = 45 ( học sinh )

đáp số: lớp 8A: 40 học sinh.

             lớp 8B: 45 học sinh.

7 tháng 4

troll người à ???

AH
Akai Haruma
Giáo viên
7 tháng 4

Lời giải:

Đổi 5 USD = 500 cents

Có thể mua được số quả dứa với 5 USD là:

$[\frac{500}{17}]=29$ (quả)

AH
Akai Haruma
Giáo viên
7 tháng 4

Đề không hiển thị. Bạn xem lại nhé.

7 tháng 4

Nửa chu vi hình chữ nhật đó là:

$48:2=24(m)$

Tổng số phần bằng nhau là:

$3+1=4(phần)$

Chiều dài hình chữ nhật là:

$24:4\times3=18(m)$

Chiều rộng hình chữ nhật là:

$18:3=6(m)$

4
456
CTVHS
7 tháng 4

Nửa chu vi HCN là:

48 : 2 = 24 (m)

Ta có  sơ đồ (tự vẽ)

Tổng số phần bằng nhau là:

1 + 3 = 4 (phần)

Chiều rộng là:

24 : 4 x 1 = 6 (m)

Chiều dài là:

24 : 4 x 3 = 18 (m)

Đ/S:...

NV
7 tháng 4

\(x^2-4+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Gọi số sản phẩm tổ 1 làm được trong tháng đầu là x(sản phẩm)

(Điều kiện: \(x\in Z^+\))

Số sản phẩm tổ 2 làm được trong tháng đầu là \(270-x\left(sảnphẩm\right)\)

Số sản phẩm tổ 1 làm được trong tháng thứ hai là:

\(x\left(100\%+8\%\right)=1,08x\left(sảnphẩm\right)\)

Số sản phẩm tổ 2 làm được trong tháng thứ hai là:

\(\left(270-x\right)\cdot\left(1+5\%\right)=1,05\left(270-x\right)\left(sảnphẩm\right)\)

Trong tháng thứ hai thì hai tổ làm được 270+18=288 sản phẩm nên ta có:

1,08x+1,05(270-x)=288

=>\(1,08x+283,5-1,05x=288\)

=>0,03x=4,5

=>x=4,5:0,03=150(nhận)

Vậy: số sản phẩm tổ 1 làm được trong tháng đầu là 150 sản phẩm

số sản phẩm tổ 2 làm được trong tháng đầu là 270-150=120 sản phẩm

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\widehat{BAD}\) chung

Do đó: ΔABD~ΔACE

b: Ta có;ΔABD~ΔACE

=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)

=>\(\dfrac{2}{AE}=\dfrac{4}{5}\)

=>\(AE=2\cdot\dfrac{5}{4}=2,5\left(cm\right)\)

c: 

Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB~ΔHDC

=>\(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

=>\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)

Xét ΔHED và ΔHBC có

\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)

\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHED~ΔHBC

=>\(\widehat{HDE}=\widehat{HCB}\)