Một người đi xe máy từ A đến B với vận tốc 30 / km h , lúc về người đó đi trên con đường khác dài hơn 15 km . Vì lúc về đường dễ đi hơn nên người đó đi với vận tốc 40 / km h , do vậy thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn xem lại đề nhé
(Điểm D thuộc cạnh AC thì \(\widehat{ADC}=180^o\)mà lại có \(\widehat{ADC}=\widehat{B}\)nên \(\widehat{B}=180^o\)??)

Gọi số sản phẩm theo kế hoạch tổ phải làm là : x ( x > 0 )
Số ngày dự định làm xong là :x ( ngày )
Số ngày thực tế làm xong là : x-3
Số sản phẩm thực tế là : 22(x-3)
Số sản phầm dự định là : 18x
Theo bài ra ta có phương trình :
22(x-3) - 18x = 14
22x-66 -18x = 14
4x= 14+66
4x=80
x=20
Vậy số sản phẩm tổ đó phải làm theo kế hoạch là : 20 sản phẩm
Gọi số sản phẩm theo kế hoạch tổ phải làm là x ( x > 0 )
Số ngày tổ dự định sẽ làm xong là : \(\frac{x}{18}\)(sản phẩm)
Số ngày trên thực tế tổ đã làm là : \(\frac{x+14}{18+4}\)= \(\frac{x+14}{22}\)( sản phẩm )
Theo đề bài , ta có :
\(\frac{x}{18}\)\(-\)\(\frac{x+14}{22}\)\(=\)4
\(\Leftrightarrow\)22x - 18x - 252 = 1056
\(\Leftrightarrow\)x = 327
Vậy số sản phẩm tổ đó phải làm theo kế hoạch là : 327 sản phẩm.

\(Tacó:\) \(x+y=3\)
\(\dfrac{x}{2}+\dfrac{x}{2}+y=3\)
Áp dụng BĐT Cô si cho 3 số, ta có:
\(3=\left(\dfrac{x}{2}+\dfrac{x}{2}+y\right)\ge3.^3\sqrt{\dfrac{x}{2}.\dfrac{x}{2}.y}=3.^3\sqrt{\dfrac{x^2y}{4}}\)
⇒\(1\ge^3\sqrt{\dfrac{x^2y}{4}}\)
⇒\(1\ge\dfrac{x^2y}{4}\Leftrightarrow x^2y\le4\)
bgfsdrtuywHFG 8UNHJDF8HERHYVGAEURYGGHVNIUAEGHNA9W7HVTGAN789RWHTFG78Wdx h8QJ7HDCGN87SDHFGCNSDJFCHSIUDHFCGXNIDUFV GHSRIUGIJHVNSAEUKGFHNIAUHDFGNCIAUSDFTGAIUUSDFNGCNA87HGAYDSFFHGUIBYHDSFVGISNUADFVHNUSDERYFCGNIAUSHGFCIUAHYNCFGVIASDUHCGFIUHAGDF8C7VEASRYJGVN879USDHBGH9MI8ERYHGJUI9DHFG BUIDZFH BVI7AUD7GVI7NAERUGJV8N7AERU8JGYVNI78SCGHTJEIUNTGHSNI7YDGUH NVSI7FGCNBIUSAJFGVHBMIO8VHKMISURDVI8MRVUEMHBISODUJNGMCOISDFJHBG8UZVXBGOCERJMBFJMHASBFDIUMCW NFCKJIBSIUDF9CU HMZSDFUIYGNMCFSD8RG N,MCEA IRJGNUDH BGISDUFHV 8AJMBUG7 UYRBMGUIHBXCMGJIUHSBMZDFG JNBHIUHJFNMSGDHUIADFSBTXG6CY7S

\(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right).\left(1+\frac{1}{z}\right)=2\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1+\frac{1}{x}\le1+\frac{1}{y}\le1+\frac{1}{z}\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)\le \left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow2\le\left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow1+\frac{1}{z}\ge\sqrt[3]{2}\)
\(\Rightarrow\frac{1}{z}\ge\sqrt[3]{2}-1\)
\(\Rightarrow z\le\frac{1}{\sqrt[3]{2}-1}< 4\)
Mà z thuộc N* \(\Rightarrow z\in\left\{1;2;3\right\}\)
TH1 : \(z=1\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{1}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1\)
Ta có : \(1+\frac{1}{x}>1;1+\frac{1}{y}>1\)\(\Rightarrow\left(\frac{1}{x}+1\right)\left(1+\frac{1}{y}\right)>1\left(lọai\right)\)
TH2 : \(z=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{2}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
Ta có : \(\left(1+\frac{1}{y}\right)^2\ge\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
\(\Rightarrow1+\frac{1}{y}\ge\sqrt{\frac{4}{3}}\)
\(\Rightarrow\frac{1}{y}\ge\frac{2\sqrt{3}}{3}-1\)
\(\Rightarrow y\le\frac{1}{\frac{2\sqrt{3}}{3}-1}< 7\)
\(\Rightarrow y\in\left\{1;2;3;4;5;6\right\}\)
Nếu y = 1 \(\Rightarrow\left(1+1\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -3 ( loại )
Nếu y = 2 \(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -9 ( loại )
Nếu y = 3 \(\Rightarrow\left(1+\frac{1}{3}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > \(x\in\varnothing\)
Nếu y = 4 \(\Rightarrow\left(1+\frac{1}{4}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 15 ( tm )
Nếu y = 5 \(\Rightarrow\left(1+\frac{1}{5}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 9 ( tm )
Nếu y = 6 \(\Rightarrow\left(1+\frac{1}{6}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 7 ( tm )
TH3 : z =3 thì bạn làm tương tự nhé


a) Xét \(\Delta ABC\)và \(\Delta HBA\), ta có:
\(\widehat{B}\)chung, \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(đpcm)
b) \(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=\sqrt{900+1600}=\sqrt{2500}=50\left(cm\right)\)
Ta có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{30.40}{50}=24\left(cm\right)\)
Vậy \(AH=24cm\)

\(x^2+3x+3+x^2-x-1-2x^2+2x+1=1\)
\(\Leftrightarrow4x+2=0\Leftrightarrow x=-\dfrac{1}{2}\)

gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km