c/m rằng trong hình thang cân hiệu bình phương của đường chéo và cạnh bên =tích 2 đáy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x^2 -2x -8
=x2+2x-4x-8
=x.(x+2)-4.(x-2)
=(x+2)(x-4)
b. 4x^4 - 4x -35
=4x2+10x-14x-35
=2x.(2x+5)-7.(2x+5)
=(2x+5)(2x-7)
(x^2-x)(x^2+x-1)
=x4+x3-x2-x3-x2+x
=x4-0x3-2x2+x
Vậy hệ số của x3 là 0
A = 3.[(x + y)2 - 2xy) - 2. [( x+ y)3 - 3xy.(x+ y)] = 3. (1 - 2xy) - 2.(1 - 3xy) = 3 - 6xy - 2 + 6xy = 3- 2= 1
Gọi 3 số tự nhiên cần tìm là a-2,a,a+2
Ta có:(a-2)a+192=a(a+2)
<->a^2-2a+192=a^2+2a
<->192=a^2+2a-a^2+2a
<->192=4a
<->a=48
-->a-2=46
a+2=50
Vây 3 số chẵn cần tìm là 46,48,50
Gọi 3 số chẵn cần tìm là:2k,(2k+2),(2k+4) Đk: kЄN
Theo bài ra... ta có:
(2k+2)(2k+4) - 2k(2k+2) = 192
<=>4k² + 12k +8 - 4k² - 4k =192
<=>8k = 184
<=>k = 23(thỏa mãn ĐK)
Vậy 3 số chẵn cần tìm là: 46, 48, 50
cach hai do
a) (x-2)(2x+3)=0 b) x2-6x+9=0 c)x2-(x+1)2=0
-> x-2=0 hay 2x+3=0 -> (x-3)2=0 x2-(x2+2x+1)=0
-> x=2 hay x=-3/2 -> x-3=0-> x=3 x2-x2-2x-1=0
-2x-1=0
x=-1/2
d)x(2x-4)-2x(x+3)=20 e) 3x(x-4)+12x-48=0
2x2-8x-2x2-6x=20 3x2-12x+12x-48=0
-14x=20 3x2-48=0
x=-10/7 3x2=48
x2=48:3
x2=16-> x=4 hay x= -4
f) 4x2+4x=-1 g) (2x-3)2+(x-3)(2x+3)=0
4x2+4x+1=0 4x2-12x+9+2x2+3x-6x-9=0
(2x+1)2=0 6x2-15x=0
2x+1=0 3x(2x-5)=0
x=-1/2 3x=0 hay 2x-5=0
x=0 hay x=5/2
x^10+x^5+1
=x10-x+x5-x2+x2+x+1
=x.(x9-1)+x2.(x3-1)+(x2+x+1)
=x.(x3-1)(x3+1)+x2(x3-1)+(x2-x+1)
=x.(x-1)(x2+x+1)(x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+x2(x-1)+1]
=(x2+x+1)(x5+x2-x4-x+x3-x2+1)
=(x2+x+1)(x5-x4+x3-x+1)
x^10+x^5+1
=x10-x+x5-x2+x2-x+1
=x.(x9-1)+x2.(x3-1)+(x2+x+1)
=x.(x3-1)(x3+1)+x2(x3-1)+(x2-x+1)
=x.(x-1)(x2+x+1)(x3+1)+x2(x-1)(x2+x+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+x2(x-1)+1]
=(x2+x+1)(x5+x2-x4-x+x3-x2+1)
=(x2+x+1)(x5-x4+x3-x+1)
x^9 + x^8 + x^7 - x^3 + 1
= x^7 ( x^2 + x + 1 ) - ( x^3 - 1 )
= x^7 ( x^2 + x + 1 ) - ( x - 1 )(x^2 + x + 1 )
= ( x^7 - x + 1 )(x^2 + x + 1 )
+ Bạn vẽ hình như sau: hình thang cân ABCD có đáy nhỏ là AB và đáy lớn là CD
+ Từ C và D hạ lần lượt các đường vuông góc với AB lần lượt cắt AB tại E và F
+ Xét hai tam giác vuông BCE và tam giác vuông ADF có
CE=DF (đường cao của hình thang
BC=AD (hai cạnh bên hình thang cân)
^ADF=^BCE (cùng phụ với ^ADC=BCD)
=> tg BCE=tg ADF (c.g.c) => AF=BE=2AF
+ Xét tam giác vuông BDF có
\(BD^2=DF^2+BF^2=DF^2+\left(AB+AF\right)^2\)
+ Xét tg vuông ADF có
\(AD^2=DF^2+AF^2\)
=> \(BD^2-AD^2=DF^2+\left(AB+AF\right)^2-DF^2-AF^2=\)
\(=AB^2+AF^2+2AB.AF-AF^2=AB\left(AB+2AF\right)=AB.CD\)