\(\left(\sqrt[3]{a}+1\right)^3-\left(\sqrt[3]{a}-1\right)^3\)
ai tính hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(\sqrt{4a^2}+5a\)với a >= 0
\(=\left|2a\right|+5a=7a\)
b, \(\sqrt{25x^2}+3x=\left|5x\right|+3x=-5x+3x=-2x\)với x =< 0
c, \(x-2-\sqrt{4-4x+x^2}=x-2-\sqrt{\left(2-x\right)^2}=x-2-\left|2-x\right|\)
\(=x-2-2+x=-4\)với x =< 2
d, \(3-x+\sqrt{9+9x+x^2}=3-x+\sqrt{\left(3+x\right)^2}=3-x+\left|x+3\right|\)
\(=3-x+x+3=6\)với x =< -3
BẠn viết ra giấy đc ko mình ko nhìn thấy
\(A=\frac{10a^2+10b^2+c^2}{ab+bc+ca}=\frac{8a^2+\frac{c^2}{2}+8b^2+\frac{c^2}{2}+2a^2+2b^2}{ab+bc+ca}\)
\(\ge\frac{2\sqrt{8a^2.\frac{c^2}{2}}+2\sqrt{8b^2.\frac{c^2}{2}}+4\sqrt{a^2b^2}}{ab+bc+ca}=\frac{4\left(ab+bc+ca\right)}{ab+bc+ca}=4\)
Dấu \(=\)khi \(a=b=\frac{c}{4}\).
Bạn tham khảo nhé: áp dụng bđt côsi cho 2 số dương
2a2+2b2>=4ab;8a2+c2/2>=4ac;8b2+c2/2>=4ac nên A>=4
dấu bằng xảy ra khi 4a=4b=c
Ta có: ab/c + bc/a + ca/b - (a + b + c)
= ab/c - a + bc/a - b + ca/b - c
= (ab-ac)/c + (bc-ba)/a + (ca -cb)/b
= [a^2b(b-c) + b^2c(c-a) + c^2a(a-b)]/abc >= 0 (Vì a,b,c > 0).
Vậy: ab/c + bc/a + ca/b ≥ a + b + c.
Gửi lại vì cái lúc nãy bị liền nhau quá khó hiểu
#Học tốt!
tham khảo :
Vậy: ab/c + bc/a + ca/b ≥ a + b + c.Ta có: ab/c + bc/a + ca/b - (a + b + c)
= ab/c - a + bc/a - b + ca/b - c
= (ab-ac)/c + (bc-ba)/a + (ca -cb)/b
= [a^2b(b-c) + b^2c(c-a) + c^2a(a-b)]/abc >= 0 (Vì a,b,c > 0).
iả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Cre: Lazi
#Học tốt!