Cho hình bình hành ABCD(AB>BC), tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F.
a) chứng minh 2 tam giác ADE và CBF là những tấm giác cân bằng nhau
b)tứ giác DEBF là hình j, tại sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 + 3x + 3 = a ; x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d
Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1)
và a + b + c + d = 0
Khi đó ta có (1) <=> (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0
<=> ab(a + b) + cd(c + d) = 0
<=> (a + b)(ab - cd) = 0
<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)
Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1
<=> x2 + x + 1 = 0
<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
=> Phương trình vô nghiệm
Với ab = cd
\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)
\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
Lời giải:
$(\sqrt{2}x+\sqrt{8}y)^2=(\sqrt{2}x)^2+(\sqrt{8}y)^2+2\sqrt{2}x.\sqrt{8}y$
$=2x^2+8y^2+8xy$
\(\widehat{A}+\widehat{D}=70^o+110^o=180^o\)
=> ABCD là tứ giác nội tiếp (tứ giác có tổng 2 góc đối =180 là tứ giác nt)
\(\widehat{ABD}=\widehat{ACD}\) (góc nt cùng chắn cung AD) (1)
\(\widehat{CBD}=\widehat{CAD}\) (góc nt cùng chắn cung CD) (2)
Tg ADC cân tại D \(\Rightarrow\widehat{ACD}=\widehat{CAD}\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}=\widehat{CBD}\)
a, Xét \(\Delta\)BAH và \(\Delta\)BCA có: \(\widehat{ABC}\) chung; \(\widehat{AHB}\) = \(\widehat{BAC}\) = 900
⇒\(\Delta\)BAH \(\sim\)\(\Delta\)BCA (g-g)
⇒\(\dfrac{BA}{BC}=\dfrac{AH}{CA}=\dfrac{BH}{BA}\)
b, Theo pytago ta có: BC2 = AB2 + AC2 = 152+162 = 481 (cm2)
⇒ BC = \(\sqrt{481}\) cm
Kẻ đường cao DK vuông góc với BC cắt BC tại K
DA = DK ( vì mọi điểm trên tia phân giác thì cách đều hai cạnh còn lại)
Vì \(\Delta\)ABD và \(\Delta\)BCD có đường cao bằng nhau nên tỉ số diện tich hai tam giác bằng tỉ số hai cạnh đáy và bằng:
\(\dfrac{AB}{BC}\) = \(\dfrac{15}{\sqrt{481}}\)
Tương tự ta có tỉ số diện tích hai tam giác, tam giác ABD và tam giác BCD bằng:
\(\dfrac{AD}{DC}\) ⇒ \(\dfrac{AD}{DC}\) = \(\dfrac{15}{\sqrt{481}}\) ⇒ \(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\) = \(\dfrac{AD+DC}{15+\sqrt{481}}\) = \(\dfrac{16}{15+\sqrt{481}}\)
AD = \(\dfrac{16}{15+\sqrt{481}}\)\(\times\)15 = \(\dfrac{240}{15+\sqrt{481}}\) = \(\dfrac{15}{16}\)(\(\sqrt{481}\) - 15)
DC = \(\dfrac{16}{15+\sqrt{481}}\) \(\times\) \(\sqrt{481}\) = \(\dfrac{1}{16}\)(481 - 15\(\sqrt{481}\))
Đổi 120 000 l = 120 m3
Chiều cao của hồ nước cũng chính là độ sâu của hồ và bằng:
120 : ( 8 \(\times\) 3) = 5 (m)
Kết luận chiều sâu của hồ nước là 5m
a) Ta thấy \(\widehat{AED}=\widehat{EDC}=\widehat{ADE}\) nên tam giác ADE cân tại A. Hoàn toàn tương tự thì tam giác CBF cân tại C.
Mặt khác, do tứ giác ABCD là hình bình hành nên \(\widehat{A}=\widehat{C},\widehat{B}=\widehat{D}\). Do đó \(\dfrac{\widehat{B}}{2}=\dfrac{\widehat{D}}{2}\) hay \(\widehat{CBF}=\widehat{ADE}\). Kết hợp với \(\widehat{A}=\widehat{C}\) thì suy ra \(\Delta ADE~\Delta CBF\left(g.g\right)\). Lại có \(\dfrac{AD}{CB}=1\) (do tứ giác ABCD là hình bình hành), suy ra \(\Delta ADE=\Delta CBF\) (2 tam giác đồng dạng có tỉ số đồng dạng bằng 1 thì 2 tam giác đó bằng nhau), ta có đpcm.
b) Ta thấy \(\widehat{AED}=\widehat{ADE}=\widehat{CBF}=\widehat{ABF}\) nên DE//BF. Lại có BE//DF (do tứ giác ABCD là hình bình hành) nên tứ giác DEBF cũng là hình bình hành (các cặp cạnh đối song song).
a/
Xét tg ADE có
\(\widehat{ADE}=\widehat{CDE}\) (gt) (1)
\(\widehat{AED}=\widehat{CDE}\) (góc so le trong) (1)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}\) => tg ADE là tg cân tại A
=> AD=AE (3)
Xét tg CBF có
\(\widehat{CBF}=\widehat{ABF}\) (gt) (4)
\(\widehat{CFB}=\widehat{ABF}\) (góc so le trong) (5)
Từ (4) và (5) => \(\widehat{CBF}=\widehat{CFB}\) => tg CBF cân tại C
=> CB=CF (6)
Ta có
AD=CB (cạnh đối hình bình hành) (7)
Từ (3) (6) (7) => AD=AE=CB=CF
Mà \(\widehat{DAE}=\widehat{BCF}\) (góc đối hình bình hành)
=> tg ADE = tg CBF (c.g.c)
=> tg ADE và tg CBF là những tg cân bằng nhau
b/
tg ADE = tg CBF (cmt) \(\Rightarrow\widehat{BFC}=\widehat{ADE}\)
Mà \(\widehat{EDC}=\widehat{ADE}\) (gt)
\(\Rightarrow\widehat{BFC}=\widehat{EDC}\) Hai góc này ở vị trí đồng vị => DE//BF (8)
Ta có
AB//CD (cạnh đối hình bình hành) => BE//DF (9)
Từ (8) (9) => DEBF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau là hình bình hành)