K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

y2 + 3y = x4 + x+ 18

<=> 4y2 + 12y = 4x4 + 4x2 + 72

<=> 4y2 + 12y + 9 = 4x4 + 4x2 + 1 + 80

<=> (2y + 3)2 = (2x2 + 1)2 = 80

<=> (2x2 + 1 + 2y + 3)(2y + 3 - 2x2 - 1) = 80

<=> (2x2 + 2y + 4)(-2x2 + 2y + 2) = 80

<=> (x2 + y + 2)(-x2 + y + 1) = 20

Lập bảng xét các trường hợp 

x2 + y + 2120-20-145-5-4210-2-10
-x2 + y + 1201-1-2054-4-5102-10-2
x |\(\pm3\) | \(\pm3\)|0|0    
y99-12 -1233-6-6 | | | |

Vậy các cặp (x;y) thỏa mãn là (-3 ; 9) ; (3;9) ; (-3 ; -12) ; (3;-12) ; (0;3) ; (0;-6)

DD
8 tháng 6 2021

Để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thì 

\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0,\forall m\inℝ\)

Áp dụng định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-m^2\end{cases}}\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(2m+2\right)^2-4\left(4m-m^2\right)}\)

\(=\sqrt{8m^2-8m+4}=\sqrt{2\left(2m-1\right)^2+2}\ge\sqrt{2}\)

Dấu \(=\)khi \(2m-1=0\Leftrightarrow m=\frac{1}{2}\).

DD
8 tháng 6 2021

\(\sqrt{122}>\sqrt{121}=11=9+2=\sqrt{81}+2>\sqrt{80}+2\)

\(\sqrt{80}< \sqrt{81}=9=5+4=\sqrt{25}+4< \sqrt{26}+4\)

có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem

7 tháng 6 2021

Gọi vận tốc của xe máy là x (km/h), xe đạp y (km/h) (x,y>0)

40 phút = \(\frac{2}{3}\)giờ

Quãng đường xe máy đi là \(\frac{2}{3}\times x\)

Quãng đường xe đạp đi là \(\frac{2}{3}\times y\)

Vì họ gặp nhau nếu đi ngược chiều nên:

\(\frac{2}{3}\times x+\frac{2}{3}\times y=30\)

\(\Rightarrow x+y=45\left(1\right)\)

Nếu đi cùng chiều thì sau 2h xe máy đuổi kịp xe đạp nên ta có:

\(2x-2y=AB=30\)

\(\Rightarrow x-y=15\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x+y=45\\x-y=15\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=15\end{cases}}}\)

Vậy vận tốc mỗi xe là 30 km/h và 15 km/h

7 tháng 6 2021

*Đừng nói em cop bạn ý :(

7 tháng 6 2021

G/s điểm cố định đó là \(\left(x_0;y_0\right)\) nên khi đó:
\(y_0=\left(m-2\right)x_0+2\) (với mọi m)

\(\Leftrightarrow mx_0-2x_0+2-y_0=0\) (với mọi m)

\(\Leftrightarrow mx_0-\left(2x_0+y_0-2\right)=0\) (với mọi m)

\(\Rightarrow\hept{\begin{cases}x_0=0\\2x_0+y_0-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_0=0\\y_0=2\end{cases}}\)

=> đcđ đó là (0;2)

8 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)   

\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{1}{\sqrt{x}-1}\)