chứng minh rằng :A=1/n + 1/n+1 +1/n+2 +.....+ 1/n^2-1 +1/n^2 >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{7b}{7d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}=\frac{5c-5d}{7c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}-\frac{5c-5d}{7c+7d}=0\left(ĐPCM\right)\)
ta có: P(1) = 13+3a.1+a2
P(1) = 1 + 3a + a2
Lại có: Q(-2) = 2.(-2)2 - (2a+3).(-2) + a2
Q(-2) = 8 +4a + 6 + a2
Q(-2) = 15 + 4a + a2
mà P(1) = Q(-2)
=> 1 + 3a + a2 = 15 + 4a + a2
=> 3a + a2 - 4a - a2 = 15-1
-a = 14
a = -14
KL: a = -14
Gọi 3 góc của nó lần lượt là a; b; c và a + b + c = 180độ
=> \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Áp dụng tính chất của dãy ts bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180}{15}=12\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=12\\\frac{b}{5}=12\\\frac{c}{7}=12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=36\\b=60\\c=84\end{cases}}\)
Vậy,.......
Vì số đó là bội của 18 => số đó chia hết cho 2 và 9
=> tổng các cs của nó chia hết cho 9 và có tận cùng là số chẵn
mà các cs tỉ lệ với 1 : 2 : 3 ta cũng có các tỉ lệ 2 : 4 : 6 và 3 : 6 : 9
=> tỉ lệ 3 : 6 : 9 chia hết cho 9 ( chọn )
mà số đó chia hết cho 2
=> có 2 số thỏa mãn đề bài là 396 và 936
\(\left(x-3\right)^2=25=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\)
Vậy,........
Học tốt ^^