mn giúp với ạ mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm E sao cho tam giác BCD đồng dạng với tam giác BEA. Khi đó, theo tính chất của tam giác đồng dạng, ta có
\(\frac{BA}{EA}=\frac{BD}{CD}\)
Suy ra \(BA.CD=EA.BD\left(1\right)\)
Mặt khác, tam giác EBC và tam giác ABD cũng đồng dạng do có
\(\frac{BA}{BD}=\frac{BE}{BC}\) và góc EBC= góc ABD
Từ đó
\(\frac{EC}{BC}=\frac{AD}{BD}\)
Suy ra
\(AD.BC=EC.BD\left(2\right)\)
Cộng (1) và (2) ta suy ra
\(AB.CD+AD.BC=BD.\left(EA+EC\right)\)
Áp dụng bất đẳng thức tam giác ta suy ra \(AB.CD+AD>BC\ge AC>BD\)
Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptoleme.
Ta có: \(\frac{1}{2\sqrt{3}-5}-\frac{1}{2\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+5-2\sqrt{3}+5}{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right)}\)
\(=\frac{10}{\left(2\sqrt{3}\right)^2-5^2}\)
\(=\frac{10}{12-25}=\frac{-10}{13}\)
\(\Rightarrow\)Chọn A
Đáp án: A. vì đó là dây trần và dây có vỏ bọc cách điện
Điện năng tiêu thụ trong 1h:
A=P.t=0,1.1=0,1kWhA=P.t=0,1.1=0,1kWh
do P=100W=0,1kWP=100W=0,1kWvì sử dụng hiệu điện thế là hiệu điện thế định mức nên công suất tiêu thụ là công suất định mức
HT
\(\sqrt{-2\sqrt{6}+5}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)(vì \(\sqrt{3}-\sqrt{2}>0\))
\(\Rightarrow\)Chọn C
A B C M H K I
a/
Ta có A và M cùng nhìn BK dưới 1 góc vuông => A và M nằm trên đường tròn đường kính BK => ABMK là tứ giác nội tiếp đường tròn đường kính BK
Xét \(\Delta AMC\) và \(\Delta BKC\) có
\(\widehat{ACB}\) chung
\(\widehat{KBC}=\widehat{MAC}\) (góc nội tiếp đường tròn cùng chắn cung KM)
\(\Rightarrow\Delta BKC\) đồng dạng với \(\Delta AMC\) (g.g.g)
Xét tg vuông AHM có
HM=HA => tg AHM vuông cân tại H \(\Rightarrow\widehat{AMB}=45^o\)
Ta có \(\widehat{AKB}=\widehat{AMB}=45^o\) (góc nội tiếp đường tròn cùng chắn cung AB)
Xét tg vuông ABK có
\(\widehat{ABK}=90^o-\widehat{AKB}=90^o-45^o=45^o\)
\(\Rightarrow\widehat{ABK}=\widehat{AKB}=45^o\)=> tg ABK vuông cân tại A => AB=AK
\(\Rightarrow BK=\sqrt{AB^2+AK^2}=\sqrt{AB^2+AB^2}=AB\sqrt{2}\) (Pitago)
b/
Xét tg vuông cân ABK có
IB=IK (gt) => AI là trung tuyến => \(AI\perp BK\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao)
=> I và H cùng nhìn AB dưới 1 góc vuông => ABHI là tứ giác nội tiếp
\(\Rightarrow\widehat{AHI}=\widehat{ABK}\) (góc nội tiếp cùng chắn cung AI)
Mà \(\widehat{ABK}=45^o\left(cmt\right)\Rightarrow\widehat{AHI}=45^o\)