tìm x y z biết x.[x-y+z] = -11; y.[y-z-x]=25 ; z.[z+x-y] = 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^x:3^x=3\\ =>\left(9:3\right)^x=3\\ =>3^x=3\\ =>3^x=3^1\\ =>x=1\)
Vậy: ...
\(2,8\cdot\dfrac{-6}{13}-7,2-2,8\cdot\dfrac{7}{13}\\ =\left(2,8\cdot\dfrac{-6}{13}-2,8\cdot\dfrac{7}{13}\right)-7,2\\ =2,8\cdot\left(\dfrac{-6}{13}-\dfrac{7}{13}\right)-7,2\\ =2,8\cdot\dfrac{-13}{13}-7,2\\=-2,8-7,2\\ =-10\)
\(2,8\cdot\dfrac{-6}{13}-7,2-2,8\cdot\dfrac{7}{13}\\ =\left(2,8\cdot\dfrac{-6}{13}-2,8\cdot\dfrac{7}{13}\right)-7,2\\ =2,8\cdot\left(\dfrac{-6}{13}-\dfrac{7}{13}\right)-7,2\\ =2,8\cdot\dfrac{-13}{13}-7,2\\ =-2,8-7,2\\ =-10\)
\(a.5\cdot3^x=5\cdot3^4\\ =>3^x=\dfrac{5\cdot3^4}{5}=3^4\\ =>x=4\\ b.7\cdot4^x=7\cdot4^3\\ =>4^x=\dfrac{7\cdot4^3}{7}=4^3\\ =>x=3\\ c.\dfrac{3}{5}\cdot4^x=7\cdot4^3\\ =>4^x=\dfrac{7\cdot4^3}{\dfrac{3}{5}}=\dfrac{35}{3}\cdot4^3\\ =>\dfrac{4^x}{4^3}=\dfrac{35}{3}\\ =>4^{x-3}=\dfrac{35}{3}\\ =>x-3=log_4\dfrac{35}{3}\\ =>x=log_4\dfrac{35}{3}+3\\ d.\dfrac{3}{2}\cdot5^x=\dfrac{3}{2}\cdot5^{12}\\ =>5^x=\dfrac{5^{12}\cdot\dfrac{3}{2}}{\dfrac{3}{2}}=5^{12}\\ =>x=12\)
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
=>\(9\cdot5^x=9\cdot5^6\)
=>\(5^x=5^6\)
=>x=6
f: \(5\cdot3^x=7\cdot3^5-2\cdot3^5\)
=>\(5\cdot3^x=5\cdot3^5\)
=>\(3^x=3^5\)
=>x=5
g: \(5\cdot3^{x+6}=2\cdot3^5+3\cdot3^5\)
=>\(5\cdot3^{x+6}=5\cdot3^5\)
=>\(3^{x+6}=3^5\)
=>x+6=5
=>x=-1
\(e.\left(\dfrac{-13}{3}-\dfrac{4}{9}\right)-\left(\dfrac{-10}{3}-\dfrac{4}{9}\right)\\ =\dfrac{-13}{3}-\dfrac{4}{9}+\dfrac{10}{3}+\dfrac{4}{9}\\ =\left(\dfrac{-13}{3}+\dfrac{10}{3}\right)+\left(\dfrac{4}{9}-\dfrac{4}{9}\right)\\ =-\dfrac{3}{3}=-1\\ d.\dfrac{-4}{12}-\left(-0,25-\dfrac{13}{39}\right)+0,75\\ =\dfrac{-1}{3}-\left(-\dfrac{1}{4}-\dfrac{1}{3}\right)+\dfrac{3}{4}\\ =-\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{3}{4}\\ =\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =0+\dfrac{4}{4}\\ =1\)
\(a.\left(\dfrac{-1}{2}\right)^2\cdot\left(\dfrac{2}{5}\right)^2 \\ =\left(\dfrac{-1}{2}\cdot\dfrac{2}{5}\right)^2\\ =\left(\dfrac{-1}{5}\right)^2\\ =\dfrac{1}{25}\\ b.\left(\dfrac{1}{9}\right)^2:\left(\dfrac{1}{3}\right)^3\\ =\left[\left(\dfrac{1}{3}\right)^2\right]^2:\left(\dfrac{1}{3}\right)^3\\ =\left(\dfrac{1}{3}\right)^4:\left(\dfrac{1}{3}\right)^3\\ =\dfrac{1}{3}\\ c.\left(\dfrac{-1}{2}\right)^3\cdot\left(\dfrac{3}{2}\right)^3\\ =\left(\dfrac{-1}{2}\cdot\dfrac{3}{2}\right)^3\\ =\left(\dfrac{-3}{4}\right)^3\\ =\dfrac{-27}{64}\)
\(C=\dfrac{6}{1\cdot4}+\dfrac{6}{4\cdot7}+...+\dfrac{6}{301\cdot304}\\ =2\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{301\cdot304}\right)\\ =2\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{301}-\dfrac{1}{304}\right)\\ =2\cdot\left(1-\dfrac{1}{304}\right)\\ =2\cdot\dfrac{303}{304}\\ =\dfrac{303}{152}\)
\(B=\dfrac{11}{210}-\left(\dfrac{16}{15\cdot31}+\dfrac{13}{31\cdot44}+\dfrac{16}{44\cdot60}\right)\\ =\dfrac{11}{210}-\left(\dfrac{1}{15}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{60}\right)\\ =\dfrac{11}{210}-\left(\dfrac{1}{15}-\dfrac{1}{60}\right)\\ =\dfrac{11}{210}-\dfrac{1}{20}\\ =\dfrac{1}{420}\)