K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

nên 2 phân số trên bằng nhau (đpcm)

19 tháng 2 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)

<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)

<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)

Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ 1 và 2 => đpcm

19 tháng 2 2019

gọi tam giác đó là tam giác ABC (AB và BC là 2 cạnh góc vuông, AC là cạnh huyền)

ta có: AB/BC=7/24=AB/7=BC/24=AB+BC/7+24=AB+BC/31

19 tháng 2 2019

xl nhé mik ấn nhầm

19 tháng 2 2019

a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
 

19 tháng 2 2019

A B C

Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc

AB2+AC2=BC2=2601(1)

Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)

\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)

Thay vào (1) ta đc

\(AB^2+\frac{AB^2.225}{64}=2601\)

\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)

\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)

Vậy ........

b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

tk mk nhé

19 tháng 2 2019

nếu là BAC thì phải bằng  CBD 

còn nếu là DCM thì phải = BMA 

xem lại đề 

19 tháng 2 2019

Giai kiểu gì đấy ?

20 tháng 6 2019

Ta có 2MC=AC( Vì Mlà tđiểm của AC)

=> 2MC.AC=AC2

Ta có: tam giác MDC đồng dạng tam giác BAC nên (MC/BC)=(DC/AC)

=>MC.AC=BC.DC

=>2MC.AC=2BC.CD

=>AC2 =2BC.CD

=>BC2 -AC2 =BC2 -2BC.CD

=>AB2 =BC(BC-CD-CD)=BC(BD-CD)=(BD+DC)(BD-CD)

=>AB2 =BD2-CD2 (ĐPCM)

~Hk tốt~

P.s: Chắc

19 tháng 2 2019

ko thể xóa link và cũng ko thể đăng linh tinh nha bn

19 tháng 2 2019

Tổng của 6 số là:

6.4=24

Tổng của 7 số là:

7.5=35

Số thứ 7 là:

35-24=11

T**k mik nhé!

19 tháng 2 2019

Gọi 6 số ban đầu có tổng là S; số thứ 7 là x. Ta có:
\(\hept{\begin{cases}\frac{S}{6}=4\\\frac{S+x}{7}=5\end{cases}\Leftrightarrow\hept{\begin{cases}S=24\\\frac{24+x}{7}=5\end{cases}}}\Leftrightarrow\hept{\begin{cases}S=24\\x=11\end{cases}}\)
Vậy số thứ 7 là số 11