K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

1 chữ ,k mih nha

4 tháng 12 2017

3 chữ,2 chữ trong đề(Có bao nhiêu chữ ''C'' trong câu sau)và 1 chữ trong câu:Cơm ;canh ;cháo gì Pôn cũng thich ăn

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

4 tháng 12 2017

\(\hept{\begin{cases}x+y-z=5\\10x+10y+2xy-z^2+25=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=x+y-5\\10x+10y+2xy-z^2+25=0\end{cases}}\)

Thế phương trình trên vào phương trình dưới, ta có:

\(10x+10y+2xy-\left(x+y-5\right)^2+25=0\)

\(\Leftrightarrow10x+10y+2xy-\left(x^2+y^2+25-10x-10y+2xy\right)+25=0\)

\(\Leftrightarrow-x^2-y^2+20x+20y=0\)

\(\Leftrightarrow-x^2+20x=y^2-20y\)

Dựa vào tương giao hai đồ thị, ta thấy phương trình trên có 2 cặp nghiệm  (0; 0 ) hoặc (20;20)

Với x = 0, y = 0, ta có z = -5.

Với x = 20, y = 20, ta có x = 35

4 tháng 12 2017

1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB

2. Cho (O) và đường thẳng d không cắt (O).  Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân

4 tháng 12 2017

Bài 5: 

Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)

Do 7 số đã cho là các số nguyên dương nên :

\(x_2\ge x_1+1\)

\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)

\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)

\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)

\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)

\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)

Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)

Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.