cứu với mn ơi
ngày mai m nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1}{2}+\frac{3}{2}+(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2012}$
$\frac{3}{2}A=\frac{3}{4}+(\frac{3}{2})^2+(\frac{3}{2})^3+(\frac{3}{2})^4+...+(\frac{3}{2})^{2013}$
$\Rightarrow \frac{3}{2}A-A=(\frac{3}{2})^{2013}+\frac{3}{4}-\frac{1}{2}-\frac{3}{2}$
$\Rightarrow \frac{1}{2}A=(\frac{3}{2})^{2013}-\frac{5}{4}$
$A=2(\frac{3}{2})^{2013}-\frac{5}{2}$
$\Rightarrow B-A=(\frac{3}{2})^{2013}-2(\frac{3}{2})^{2013}+\frac{5}{2}=\frac{5}{2}-(\frac{3}{2})^{2013}$
\(\dfrac{3}{x-5}=\dfrac{-4}{x-2}\left(x\notin\left\{5;2\right\}\right)\)
\(\Rightarrow3\left(x-2\right)=-4\left(x-5\right)\)
\(\Rightarrow3x-6=-4x+20\)
\(\Rightarrow3x+4x=20+6\)
\(\Rightarrow7x=26\)
\(\Rightarrow x=\dfrac{26}{7}\) (thỏa)
_________
\(\dfrac{3}{x}=\dfrac{y}{28}=\dfrac{-39}{91}\left(x\ne0\right)\)
\(\Rightarrow\dfrac{3}{x}=\dfrac{y}{28}=\dfrac{-3}{7}\)
+) \(\dfrac{3}{x}=-\dfrac{3}{7}\)
\(\Rightarrow x=\dfrac{3\cdot-7}{3}=-7\) (thỏa)
+) \(\dfrac{y}{28}=-\dfrac{3}{7}\)
\(\Rightarrow y=\dfrac{28\cdot-3}{7}=-12\)
\(\left(-125\right)\cdot\left(-14\right)\cdot\left(-8\right)\cdot\left(-3\right)\)
\(=\left[\left(-125\right)\cdot\left(-8\right)\right]\cdot\left[\left(-14\right)\cdot\left(-3\right)\right]\)
\(=\left(125\cdot8\right)\cdot\left(14\cdot3\right)\)
\(=1000\cdot42\)
\(=42000\)
Ta có tính chất: \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
\(N=\dfrac{10^{20}+1}{10^{21}+1}< \dfrac{10^{20}+1+9}{10^{21}+1+9}\)
\(\Rightarrow N< \dfrac{10^{20}+10}{10^{21}+10}\)
\(\Rightarrow N< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\)
\(\Rightarrow N< \dfrac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow N< M\)
Ta có tính chất: \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
\(A=\dfrac{2022^{99}-1}{2022^{100}-1}>\dfrac{2022^{99}-1-2021}{2022^{100}-1-2021}\)
\(A>\dfrac{2022^{99}-2022}{2022^{100}-2022}\)
\(A>\dfrac{2022\left(2022^{98}-1\right)}{2022\left(2022^{99}-1\right)}\)
\(A>\dfrac{2022^{98}-1}{2022^{99}-1}\)
\(A>B\)