(căn 3 - căn 2) căn 5 + 2 căn 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}+\dfrac{x-1}{x+3}\right):\left(\dfrac{2x-1}{2x+1}-1\right)\)
\(=\left(\dfrac{2}{x-3}-\dfrac{x^2+3}{x^2-9}+\dfrac{x-1}{x+3}\right):\left(\dfrac{2x-1}{2x+1}-\dfrac{2x+1}{2x+1}\right)\)
\(=\dfrac{2\left(x+3\right)-x^2-3+\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x-1-2x-1}{2x+1}\)
\(=\dfrac{2x+6-x^2-3+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{-2}{2x+1}\)
\(=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}:\dfrac{-2}{2x+1}\)
\(=\dfrac{-2}{\left(x+3\right)}\times\dfrac{2x+1}{-2}\)
\(=\dfrac{2x+1}{x+3}\)
`a, (2x-3)(x+5)-(x+4)(3-x)=3(x-1)(x+1)`
`<=>2x^2+10x-3x-15-3x+x^2-12+4x=3x^2-3`
`<=>8x=24`
`<=>x=3`
________________________________________________
`b, (4x-3)(x-1)-4x(x-2)=5`
`<=>4x^2-4x-3x+3-4x^2+8x=5`
`<=>x=2`
________________________________________________
`c, (x-2)(x^2+2x+4)-x(x-2)(x+3)=x^2`
`<=>x^3-8-x^3-3x^2+2x^2+6x=x^2`
`<=>2x^2-6x+8=0`
`<=>x^2-3x+4=0`
`<=>x^2-2x .3/2+9/4+7/4=0`
`<=>(x-3/2)^2=-7/4` (Vô lí)
`=>` Ptr vô nghiệm
\(a.\left(2x-3\right)\left(x+5\right)-\left(x+4\right)\left(3-x\right)=3\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-3x+10x-15-\left(3x-x^2+12-4x\right)=3\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+7x-15-\left(-x^2-x+12\right)=3x^2-3\)
\(\Leftrightarrow2x^2+7x-15+x^2+x-12=3x^2-3\)
\(\Leftrightarrow3x^2+8x-27-3x^2+3=0\)
\(\Leftrightarrow8x-24=0\)
\(\Leftrightarrow x=3\)
\(b.\left(4x-3\right)\left(x-1\right)-4x\left(x-2\right)=5\)
\(\Leftrightarrow4x\left(x-1\right)-3\left(x-1\right)-4x.x-4x\left(-2\right)=5\)
\(\Leftrightarrow4x^2-4x-3x+3-4x^2+8x=5\)
\(\Leftrightarrow x=2\)
Gọi 3 số lẻ liên tiếp là n; n+2; n+4, theo đề bài
\(n\left(n+2\right)+n\left(n+4\right)+\left(n+2\right)\left(n+4\right)=3n\left(n+2\right)\)
\(\Leftrightarrow n\left(n+4\right)-n\left(n+2\right)+\left(n+2\right)\left(n+4\right)-n\left(n+2\right)=0\)
\(\Leftrightarrow n\left(n+4-n-2\right)+\left(n+2\right)\left(n+4-n\right)=0\)
\(\Leftrightarrow2n+4n+8=0\Leftrightarrow6n=-8\) (xem lại đề bài)
\(\left(\dfrac{7y+1}{y^2-7y}+\dfrac{7y-1}{y^2+7y}\right)\times\dfrac{y^2-49}{y^2+1}\)
(ĐKXĐ: \(y\ne0;y\ne\pm7\))
\(=\left(\dfrac{7y+1}{y.\left(y-7\right)}+\dfrac{7y-1}{y.\left(y+7\right)}\right)\times\dfrac{\left(y-7\right).\left(y+7\right)}{y^2+1}\)
\(=\dfrac{\left(7y+1\right).\left(y+7\right)+\left(7y-1\right).\left(y-7\right)}{y.\left(y-7\right).\left(y+7\right)}\times\dfrac{\left(y-7\right).\left(y+7\right)}{y^2+1}\)
\(=\dfrac{7y^2+49y+y+7+7y^2-49y-y+7}{y.\left(y-7\right).\left(y+7\right)}\times\dfrac{\left(y-7\right).\left(y+7\right)}{y^2+1}\)
\(=\dfrac{14y^2+14}{y.\left(y-7\right).\left(y+7\right)}\times\dfrac{\left(y-7\right).\left(y+7\right)}{y^2+1}\)
\(=\dfrac{14.\left(y^2+1\right)}{y.\left(y-7\right).\left(y+7\right)}\times\dfrac{\left(y-7\right).\left(y+7\right)}{y^2+1}\)
\(=\dfrac{14.\left(y^2+1\right).\left(y-7\right).\left(y+7\right)}{y.\left(y-7\right).\left(y+7\right).\left(y^2+1\right)}\)
\(=\dfrac{14}{y}\)
Có a + b +c =0
<=> a + b = -c
=> a2+b2+2ab = c2
=> a2+b2 -c2 = -2ab
=>( a2+b2 -c2) = 4a2b2
<=> a4 +b4 +c4+2a2b2-2b2c2-2a2c2=4a2b2
=> a4+b4+c4= 2a2b2+2b2c2+2c2a2
=> 2(a4+b4+c4)=2a2b2+2b2c2+2c2a2+a4+b4+c4
<=> 2(a4+b4+c4)=(a2+b2+c2)2
<=>a4+b4+c4= \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{1^2}{2}=\dfrac{1}{2}\)
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2\left(ab+bc+ac\right)=-1\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Ta có
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)\) (1)
Ta có
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\) Thay vào (1)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1-2x\dfrac{1}{4}=\dfrac{1}{2}\)
Đề như này đúng không bạn
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
áp dụng bất đẳng thức bunhia dạng phân thức có
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{3^2}{2\cdot3}=\dfrac{3}{2}\)
Dấu ''='' xay ra khi x=y=z=1
Vậy Amin=3/2 khi x=y=z=1
\(A=\Sigma\dfrac{x^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{3^2}{2.3}=\dfrac{3}{2}\)
\(dấu"="\Leftrightarrow x=y=z=1\)
\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2+2.\sqrt{3}.\sqrt{2}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left|\sqrt{3}+\sqrt{2}\right|\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=1\)