K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2022

Lời giải:
TXĐ: $\mathbb{R}\setminus \left\{-1\right\}$

$y=\frac{x^2}{x^3+1}$

$y'=\frac{x(2-x^3)}{(x^3+1)^2}$

$y'=0\Leftrightarrow x=0$ hoặc $x=\sqrt[3]{2}$ (tm TXĐ) 

Lập bảng biến thiên với các mốc sau:

$-\infty;-1; 0; \sqrt[3]{2}; +\infty$ thì ta thu được:

Hàm nghịch biến trên $(-\infty; -1)\cup (-1;0)\cup (\sqrt[3]{2}; +\infty)$

Hàm đồng biến trên $(0;\sqrt[3]{2})$

Hàm có giá trị cực tiểu $y_{ct}=y(0)=0$ tại $x=0$

Hàm có giá trị cực đại $y_{cđ}=y(\sqrt[3]{2})=\frac{\sqrt[3]{4}}{3}$ tại $x=\sqrt[3]{2}$

15 tháng 6 2022

 

A B C D S H I K

a/

\(SH\perp\left(ABCD\right);CD\in\left(ABCD\right)\Rightarrow CD\perp SH\)

ABCD là HCN \(\Rightarrow CD\perp AD\)

\(\Rightarrow CD\perp\left(SAD\right)\)

\(\Rightarrow\widehat{CSD}\) là góc giữa SC với (SAD)

Ta có

\(SH\perp\left(ABCD\right);AD\in\left(ABCD\right)\Rightarrow SH\perp AD\)

Xét tg vuông SHD có

\(SD=\sqrt{SH^2+HD^2}\) Mà HD=AD-AH=3a-a=2a

\(\Rightarrow SD=\sqrt{8a^2+4a^2}=2a\sqrt{3}\)

Ta có

\(CD\perp\left(SAD\right);SD\in\left(SAD\right)\Rightarrow CD\perp SD\)

Xét tg vuông SCD có

\(\tan\widehat{CSD}=\dfrac{CD}{SD}=\dfrac{2a}{2a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\Rightarrow\widehat{CSD}=30^o\)

b/

Ta có

\(SH\perp\left(ABCD\right);SH\in\left(SHB\right)\Rightarrow\left(SHB\right)\perp\left(ABCD\right)\)

\(SH\perp\left(ABCD\right);SH\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(ABCD\right)\)

Xét tg vuông ABH có

\(BH^2=AB^2+AH^2=4a^2+a^2=5a^2\)

Xét tg vuông DHI có

\(HI^2=HD^2+DI^2=4a^2+a^2=5a^2\)

Xét tg vuông BCI có

\(BI^2=BC^2+CI^2=9a^2+a^2=10a^2\)

Xét tg BHI có

\(BI^2=BH^2+HI^2=5a^2+5a^2=10a^2\)

=> tg BHI là tg vuông cân tại H

Ta có

\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow HI\perp SH\)

\(HI\perp HB\left(cmt\right)\)

\(\Rightarrow HI\perp\left(SHB\right);HI\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(SHB\right)\)

c/

Ta có 

\(SH\perp\left(ABCD\right);BH\in\left(ABCD\right)\Rightarrow SH\perp HB\)

\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow SH\perp HI\)

Xét tg vuông SHB có

\(SB=\sqrt{SH^2+BH^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)

Xét tg vuông SHI có

\(SI=\sqrt{SH^2+HI^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)

=> SB=SI => tg SBI cân tại S

Gọi K là trung điểm BI => \(SK\perp BI\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao)

c/m tương tự với tgBHI ta có \(HK\perp BI\)

\(\Rightarrow\widehat{SKH}\) là góc giữa (SBI) và (ABCD)

Xét tg vuông BHI có

\(HK=\dfrac{BI}{2}=\dfrac{a\sqrt{10}}{2}\) (trung tuyến thuộc cạnh huyền)

\(SH\perp\left(ABCD\right);HK\in\left(ABCD\right)\Rightarrow SH\perp HK\)

Xét tg vuông SKH có

\(\tan\widehat{SKH}=\dfrac{SH}{HK}=\dfrac{2a\sqrt{2}}{\dfrac{a\sqrt{10}}{2}}=\dfrac{4\sqrt{5}}{5}\)

còn câu d tôi bận làm sau nhé

 

 

9 tháng 11 2022

Cosx= cos pi/8 là giải phương trình như nào vậy mọi người

13 tháng 6 2022

Gọi d(S,(ABC))=h

Thể tích hình chóp \(V_{S.ABC}=\dfrac{1}{3}S_{ABC}h=\dfrac{1}{3}.\dfrac{1}{2}.2a.\dfrac{2\sqrt{3}a}{2}.h=a^3\)

\(\Rightarrow h=a\sqrt{3}\)

9 tháng 6 2022

Bài 10

ĐKXĐ: \(\left\{{}\begin{matrix}cos\left(1-x\right)\ne0\\2sin2x.cos2x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos\left(1-x\right)\ne0\\sin4x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ne\dfrac{\pi}{2}+k\pi\\4x\ne\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}-k\pi\\x\ne\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)

Bài 11.

ĐKXĐ: \(\left\{{}\begin{matrix}cos^2x-sin^2x\ne0\\sin2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\sin2x\ne0\end{matrix}\right.\)

\(\Leftrightarrow2x\ne\dfrac{k\pi}{4}\Leftrightarrow x\ne\dfrac{k\pi}{8}\)

Bài 12.

ĐKXĐ: \(\left\{{}\begin{matrix}1-2cos^2x\ne0\\1+tanx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\tanx\ne-1\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\left(k\in Z\right)\)

DD
10 tháng 6 2022

Bài 10: 

ĐKXĐ của hàm số \(y=\dfrac{tan\left(1-x\right)+2}{2sin2xcos2x-1}\) là: 

\(\left\{{}\begin{matrix}1-x\ne\dfrac{\pi}{2}+k\pi\\2sin2xcos2x-1\ne0\end{matrix}\right.,k\inℤ\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\sin4x\ne1\end{matrix}\right.,k\inℤ}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\4x\ne\dfrac{\pi}{2}+k2\pi\end{matrix}\right.,k\inℤ\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1-\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.,k\inℤ\)

1
23 tháng 5 2022

con lợn