cái gì to nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
um............................................. ko bt
bt rồi bạn viết là "em ngon như matchadnad và hết rồi" hihi
3) Ta có \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta dễ chứng minh được rằng \(\frac{a}{c}+\frac{c}{a}\ge2\)
Thật vậy \(\frac{a}{c}+\frac{c}{a}\ge2\)
<=> \(\frac{a^2+c^2}{ac}\ge2\)
<=> a2 + c2 \(\ge\)2ac
<=> (a - c)2 \(\ge0\)(đúng với a,c > 0)
Tương tự \(\hept{\begin{cases}\frac{b}{a}+\frac{a}{b}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)
Khi đó \(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge2+2+2=6\)(đpcm)
fan meowpeo<,siro à trả lời nhanh! không Tao Đấmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
vũ trụ này to nhất
hok tốt
vũ trụ