Bài 1. (2 điểm)
1. Cho đa thức $P=2{{x}^{2}}y-3x+8{{y}^{2}}-1$
a) Xác định bậc, các hạng tử của đa thức $P$;
b) Tính giá trị của đa thức $P$ tại $x=-1; \, y=\dfrac{1}{2}$.
2. Cho hai đa thức $P=5x{{y}^{2}}-3{{x}^{2}}+2y-1$ và $Q=-x{{y}^{2}}+9{{x}^{2}}y-2y+6$. Tính $P+Q$ và $P-Q$.
Bài 1:
a) Đa thức P có bậc 3, các hạng tử của đa thức P là \(2x^2y;-3x;8y^2;-1\)
b) Thay \(x=-1;y=\dfrac{1}{2}\) vào đa thức P, ta được:
\(P=2\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot\left(-1\right)+8\cdot\left(\dfrac{1}{2}\right)^2-1\)
\(P=1+3+2-1\)
\(P=5\)
Bài 2:
\(P+Q=5xy^2-3x^2+2y-1-xy^2+9x^2y-2y+6\)
\(P+Q=4xy^2-3x^2+5+9x^2y\)
\(P-Q=5xy^2-3x^2+2y-1+xy^2-9x^2y+2y-6\)
\(P-Q=-9x^2y+6xy^2-3x^2+4y-7\)
Bài 1:
a) Bậc của đa thức P là: \(2+1=3\)
Các hạng tử của P là: \(2x^2y,-3x,8y^2,-1\)
b) Thay \(x=-1;y=\dfrac{1}{2}\) vào P ta có:
\(P=2\cdot\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot-1+8\cdot\left(\dfrac{1}{2}\right)^2-1\)
\(P=2\cdot1\cdot\dfrac{1}{2}+3+8\cdot\dfrac{1}{4}-1\)
\(P=1+3+2-1\)
\(P=5\)