cho tam giác ABC nhọn, đường cao AH. Lấy D, E lần lượt là hình chiếu của H trên AB, AC. Gọi F là hình chiếu của A trên DE, K là hình chiếu của H trên DE. Chứng minh DE=EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\\ =\sqrt{2}.\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{2}.\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\\ =\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{4-2\sqrt{3}}}\\ =\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\dfrac{\left|\sqrt{3}-1\right|}{\left|\sqrt{3}+1\right|}+\dfrac{\left|\sqrt{3}+1\right|}{\left|\sqrt{3}-1\right|}\\ =\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\\ =\dfrac{4-2\sqrt{3}+4+2\sqrt{3}}{\sqrt{3^2}-1}\\ =\dfrac{8}{2}\\ =4\)
A = \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\) + \(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\) = \(\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}}\)
A = \(\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\sqrt{4-3}}\) = \(\dfrac{4}{1}\) = 4
Điều kiện: \(-\dfrac{65}{8}\le x\le2\)
\(1+8x+8^2=\sqrt{2-x}\\ \Rightarrow2-x=64x^2+1040x+4225\\ \Leftrightarrow64x^2+1041x+4223=0\\ \Leftrightarrow\left[{}\begin{matrix}x\simeq-7,735\\x\simeq-8,531\end{matrix}\right.\)
a) \(n_{H_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\) (*)
Phương trình hóa học
Mg + 2HCl ---> MgCl2 + H2 (**)
MgO + 2HCl ---> MgCl2 + H2O (***)
b) Từ (*) và (**) ta có \(n_{Mg}=0,15\Leftrightarrow m_{Mg}=0,15.24=3,6\left(g\right)\)
\(\Rightarrow m_{MgO}=10-3,6=6,4\left(g\right)\)
\(\%Mg=\dfrac{3,6}{10}.100\%=36\%\)
\(\%MgO=\dfrac{6,4}{10}.100\%=64\%\)
c) Xét phản ứng (**) ta có \(m_{MgO}=6,4\left(g\right)\Leftrightarrow n_{MgO}=n_{MgCl_2}=\dfrac{1}{2}n_{HCl}=0,16\left(mol\right)\) (1)
\(\Leftrightarrow n_{HCl}=0,32\left(mol\right)\)
Tương tự có số mol HCl trong phản ứng (*) là 0,3 mol
\(C_M=\dfrac{0,32+0,3}{0,2}=3,1\left(M\right)\)
d) Từ (1) ; (*) ; (**) ta có : \(n_{MgCl_2}=0,15+0,16=0,31\left(mol\right)\)
\(m_{MgCl_2}=0,31.95=29,45\left(g\right)\)
e) \(C_M=\dfrac{0,31}{0,2}=1,55\left(M\right)\)
- Với \(0< x;y< 1\)
\(x^2>x^{2003}\left(1\right)\)
\(y^2>y^{2003}\left(2\right)\)
\(z^2>z^{2003}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow M=x^2+y^2+z^2>x^{2003}+y^{2003}+z^{2003}=3\)
\(\Rightarrow\) Không có giá trị max của M.
- Với \(x;y\ge1\)
\(x^2\le x^{2003}\left(1\right)\)
\(y^2\le y^{2003}\left(2\right)\)
\(z^2\le z^{2003}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow x^2+y^2+z^2\le x^{2003}+y^{2003}+z^{2003}=3\)
\(\Rightarrow Max\left(M\right)=3\left(x=y=z=1\right)\)
\(xy^2+2xy-8y+x=0\)
\(\Leftrightarrow xy^2+2xy+x=8y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)
\(\Leftrightarrow x\left(y+1\right)^2=8y\)
\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)
Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn
mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương
\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn
\(\Rightarrow y\) là số lẻ
Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)
- Nhân cả hai vế của phương trình với y, ta được:
xy^3 + 2xy^2 - 8y^2 + x = 0
- Đặt z=xy, ta được:
z^3 + 2z^2 - 8z + x = 0
- Phương trình này có thể được giải bằng cách sử dụng phương pháp phân tích đa thức. Ta có:
z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
- Thay z bằng xy, ta được:
xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
- Giải nghiệm nguyên cho x và y, ta được:
(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)
Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0 là (1,1),(1,−1),(−1,1),(−1,−1).
thumb_upthumb_down
share
Tìm trên Google
As the name suggests, hedgehogs are fond of living in hedgerows where they can find an abundance of edible treats such as berries and insects. For nature enthusiasts, this is an opportune moment to explore the habitat of hedgehogs, especially with the English summers becoming warmer each year. Hedgehogs are easily identifiable due to their sharp spines, which serve as an excellent form of defense. When they perceive a threat, they instinctively curl up into a spiky ball, making it difficult for predators to harm them.