Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2+2y^2=5xy$
$\Leftrightarrow 2x^2+2y^2-5xy=0$
$\Leftrightarrow (2x^2-4xy)-(xy-2y^2)=0$
$\Leftrightarrow 2x(x-2y)-y(x-2y)=0$
$\Leftrightarrow (x-2y)(2x-y)=0$
$\Leftrightarrow x=2y$ hoặc $2x=y$
Do $0< x< y$ nên $2x=y$
Khi đó: $E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3$
Lời giải:
a. $x(\frac{4}{5}x-1)(0,1x-10)=0$
$\Rightarrow x=0$ hoặc $\frac{4}{5}x-1=0$ hoặc $0,1x-10=0$
Nếu $\frac{4}{5}x-1=0$
$\Rightarrow x=1: \frac{4}{5}=\frac{5}{4}$
Nếu $0,1x-10=0$
$\Rightarrow x=10:0,1=100$
Vậy $x=0; \frac{5}{4}; 100$
b.
$(\frac{1}{4}x-1)-(\frac{5}{6}x+2)-(1-\frac{5}{8}x)=0$
$(\frac{1}{4}x-\frac{5}{6}x+\frac{5}{8}x)-(1+2+1)=0$
$\frac{1}{24}x-4=0$
$x=4: \frac{1}{24}=96$
Ta có: \(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\left(x,y,z\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\)
\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{z+x+y}\)
\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=2\)
\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2z}{x}-1=\dfrac{z+2x}{y}-1=2\)
\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2z}{x}=\dfrac{z+2x}{y}=3\)
\(\Rightarrow\dfrac{x+2y}{z}\cdot\dfrac{y+2z}{x}\cdot\dfrac{z+2x}{y}=3\cdot3\cdot3\)
\(\Rightarrow\dfrac{x+2y}{y}\cdot\dfrac{y+2z}{z}\cdot\dfrac{z+2x}{x}=27\)
\(\Rightarrow\left(\dfrac{x}{y}+2\right)\left(\dfrac{y}{z}+2\right)\left(\dfrac{z}{x}+2\right)=27\)
hay \(P=27\)
Vậy: ...
Lời giải:
Xét tam giác $OBD$, áp dụng BĐT tam giác thì:
$DB< OB+OD$
Mà $OB=OC$ nên: $OB+OD=OC+OD=CD$
$\Rightarrow DB< CD$ (đpcm)
Lời giải:
a. Ta thấy: $AB\perp BC, CD\perp BC$
$\Rightarrow AB\parallel CD$
$BC\perp CD; DE\perp CD$
$\Rightarrow BC\parallel DE$
b.$AB\perp BC, BC\parallel DE\Rightarrow AB\perp DE$
Mà $DE\perp EF$
$\Rightarrow AB\parallel EF$
c.
Do $AB\parallel CD$ nên:
$\widehat{AIC}+\widehat{IAB}=180^0$ (2 góc trong cùng phía)
$\Rightarrow \widehat{AIC}=180^0-\widehat{IAB}=180^0-50^0=130^0$
a) C/m tam giác BAD = tam giác BED
xét tam giác BAD và tam giác BED, ta có
BD chung
BA = BE (gt)
ABD = DBE (BD tia phân giác góc ABC)
=>tam giác BAD = tam giác BED
=>AD=DE( cặp cạnh tương ứng)
b) chứng minh AF = EC
Xét tam giác ADF và tam giác EDC, ta có
AD = DE( cmt )
ADF = EDC( đối đỉnh )
DAF=DEC( = 900)
=>tam giác ADF = tam giác EDC
=>AF = EC ( cặp cạnh tương ứng)
=>ECA=AFE(cặp góc tương ứng )
c) C/M AE // FC
tam giác BEC có
BE = BA ( gt )
=> tam giác BEC cân cại B
=>BEA=BAE
ta có
ED = AD
DF = DC
=>ED+DF=AD+DC
=>EF=AC
xét tam giác ACF và tam giác EFC, ta có
EC = AF (cmt)
CF chung
EF=AC(cmt)
=>tam giác ACF= tam giác EFC
=>EFC=ACF(cặp góc tương ứng)
ta có:
ECA = AFE(cmt)
ACF=EFC(cmt)
=>ECA+ACF=AFE+EFC
=>ECF=AFC
tam giác BCF có
BCF=BFC(cmt)
=>tam giác BCF cân tại B
Ta có
tam giác BEC cân tại B
tam giác BCF cân tại B
=>BEA=BCF=BAE=BFC
mà BEA đồng vị BCF
=> AE//FC
cái câu c mình ko chắc đúng lắm nha.('v')
Lời giải:
a.
Ta thấy $\widehat{BAE}=\widehat{DCE}$ mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$
$\Rightarrow \widehat{ABE}=\widehat{EDC}$ (so le trong)
Xét tam giác $ABE$ và $CDE$ có:
$AB=CD$
$\widehat{BAE}=\widehat{DCE}$ (gt)
$\widehat{ABE}=\widehat{CDE}$ (cmt)
$\Rightarrow \triangle ABE=\triangle CDE$ (g.c.g)
$\Rightarrow AE=CE; BE=DE$ nên $E$ là trung điểm $AC, BD$
b. Hai tam giác này không bằng nhau.
c. Xét tam giác $ACD$ và $CAB$ có:
$AC$ chung
$CD=AB$
$\widehat{ACD}=\widehat{CAB}$
$\Rightarrow \triangle ACD=\triangle CAB$ (c.g.c)
$\Rightarrow \widehat{CAD}=\widehat{ACB}$
Mà 2 góc này ở vị trí so le trong nên $AD\parallel BC$