K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Trên tia Ox, ta có: OA<OB

nên A nằm giữa O và B

=>OA+AB=OB

=>AB+2=7

=>AB=5(cm)

b: Y là trung điểm của OB

=>\(BY=\dfrac{BO}{2}=\dfrac{7}{2}=3,5\left(cm\right)\)

Vì BY<BA

nên Y nằm giữa B và A

=>BY+YA=BA

=>YA+3,5=5

=>YA=1,5(cm)

Số thóc ở kho thứ nhất là:

(145-45):2=50(tấn)

Số thóc của hai kho còn lại là 50+45=95(tấn)

Số thóc của kho thứ hai là (95-13):2=82:2=41(tấn)

Số thóc của kho thứ ba là 41+13=54(tấn)

12 tháng 8

Số thóc ở kho thứ nhất là:

(145 - 45) : 2 = 50 (tấn)

Số thóc của hai kho còn lại là 50 + 45 = 95 (tấn)

Số thóc của kho thứ hai là (95-13) : 2 = 82 : 2 = 41 (tấn)

Số thóc của kho thứ ba là 41 + 13 = 54 (tấn)

a: Ta có: \(\widehat{HIA}+\widehat{HAI}=90^0\)(ΔHAI vuông tại H)

\(\widehat{KIB}+\widehat{KBI}=90^0\)(ΔKIB vuông tại K)

mà \(\widehat{HIA}=\widehat{KIB}\)(hai góc đối đỉnh)

nên \(\widehat{HAI}=\widehat{KBI}\)

=>\(x=40^0\)

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>\(x=\widehat{EBD}=\widehat{ECD}=35^0\)

c: Ta có: \(\widehat{IMP}+\widehat{IPM}=90^0\)(ΔMIP vuông tại I)

\(\widehat{MPN}+\widehat{MNP}=90^0\)(ΔMNP vuông tại M)

Do đó: \(x=\widehat{IMP}=\widehat{N}=60^0\)

Bài 2:

c: \(C=27x^3-27x^2y+9xy^2-y^3-121\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y+3\cdot3x\cdot y^2-y^3-121\)

\(=\left(3x-y\right)^3-121=7^3-121=343-121=222\)

Bài 3:

a: \(x^2-4+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

=(x-2)(x+2+x-2)

=2x(x-2)

b: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-1-y\right)\left(x-1+y\right)\)

c: \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

d: \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)

\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

12 tháng 8

\(\dfrac{37}{49}\)

cánh làm mà

12 tháng 8

(Bạn có thể thay tên con vật và thay các đặc điểm nhé !)

Meo! Meo! Xin tự giới thiệu với các bạn, tôi là mèo tam thể Mi Mi, vừa tròn một tuổi. Tôi về ở với chị .... đã được nửa năm rồi. Chuyện của tôi với chị Hằng đầu đuôi là thế này:

   Năm ngoái, nhà chị .... ở trên thành phố có nuôi một anh Mèo Mướp. Chị .... kể là anh Mèo Mướp bắt chuột rất tài. Lũ chuột cống, chuột nhắt cứ thấy bóng anh ấy là khiếp vía, tìm đường trốn chạy. Nhờ thế mà đồ đạc trong nhà đỡ bị cắn phá. Ai cũng quý, cũng yêu anh Mèo Mướp.

   Nhưng rồi anh Mèo Mướp bị bọn trộm bắt mất. Lũ chuột được thể hoành hành dữ dội. ..... phải về quê xin bà ngoại một con mèo khác. Đó chính là tôi. Phải xa mái nhà vốn đã quen thuộc, gắn bó bấy lâu, tôi thấy lòng nôn nao khó tả. Lên thành phố, lạ cảnh, lạ người, tôi sẽ sống ra sao?

   Nhưng nỗi băn khoăn ấy nhẹ hẳn đi khi chị .... đón tôi từ tay bà ngoại. Chị .... là một cô bé xinh xắn và lanh lợi. Chị ôm tôi vào lòng, thủ thỉ:

   - Mi Mi ngoan của chị! Về với chị nhé! Ôi, bộ lông của Mi Mi mới đẹp làm sao!

   Nghe chị .... khen, tôi thích lắm! Kể từ nay, chị Hằng sẽ là cô chủ nhỏ của tôi.

   Đường lên thành phố xa ơi là xa! Dễ đến mấy chục cây số. Lúc trời xẩm tối, mẹ con chị Hằng mới về đến nhà. Đèn điện bật sáng. Ồ! Tất cả đều lạ lẫm đối với tôi! Căn nhà hơi chật mà lại nhiều đồ đạc thế kia thì lũ chuột tha hồ mà ẩn nấp.

   Suốt mấy ngày, tôi loanh quanh trong nhà, làm quen với nơi ở mới. Chị ...chăm sóc tôi rất kĩ. Lúc chị học bài, tôi nằm cạnh bàn, mắt lim dim. Học bài trong, trước lúc đi ngủ, bao giờ chị cũng vuốt ve và âu yếm trò chuyện với tôi như với đứa em mà chị thương yêu. Đáp lại tình cảm đặc biệt mà chị ... dành cho tôi, tôi cố làm tròn phận sự của mình. Sau mỗi lần tôi bắt được chuột, chị Hằng đều dành cho tôi những phần thưởng xứng đáng.

   Chị .... yêu tôi và tôi cũng rất mến chị Hằng. Mấy ngày chị ấy cùng với các bạn trong lớp đi tham quan xa nhà, tôi nhớ lắm! Tôi thích nghe giọng nói dịu dàng của chị mỗi lúc chị khen: "Ôi! Mi Mi của chị giỏi quá chừng! Lại đây với chị nào!".

 

Câu 8:

\(x:4\times36-x:7\times28+x:4\times20=180\)

=>9x-4x+5x=180

=>10x=180

=>x=180:10=18

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)(hai góc so le trong, AD//CB)

Do đó: ΔAHD=ΔCKB

=>AH=CK

Ta có: AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó:AHCK là hình bình hành

b: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

ta có: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của HK

c: Xét tứ giác AMCN có

AM//CN

AN//CM

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

=>M,O,N thẳng hàng

Để hệ có nghiệm duy nhất thì \(\dfrac{a+1}{1}\ne\dfrac{-a}{a}=-1\)

=>\(a+1\ne-1\)

=>\(a\ne-2\)

\(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)x-ay+x+ay=5+a^2+4a\\x+ay=a^2+4a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(a+2\right)=a^2+4a+5\\ay=a^2+4a-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=a^2+4a-\dfrac{a^2+4a+5}{a+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=\dfrac{\left(a+2\right)\left(a^2+4a\right)-a^2-4a-5}{a+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\y=\dfrac{a^3+4a^2+2a^2+8a-a^2-4a-5}{a\left(a+2\right)}=\dfrac{a^3+5a^2+4a-5}{a\left(a+2\right)}\end{matrix}\right.\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a^2+4a+4+1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a+2\in\left\{1;-1\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a\in\left\{-1;-3\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow a=-1\)