1. Cho tam giác ABC vuông tại A, gọi D là điểm đối xứng với A qua cạnh BC. chúng minh tứ giác ABDC nội tiếp.
làm giúp mình bài toán nay voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của cano lúc nước yên lặng là x(km/h)
(Điều kiện: x>4)
vận tốc lúc xuôi dòng là x+4(km/h)
Vận tốc lúc ngược dòng là x-4(km/h)
Thời gian đi xuôi dòng là \(\dfrac{30}{x+4}\left(giờ\right)\)
Thời gian đi ngược dòng là \(\dfrac{30}{x-4}\left(giờ\right)\)
Tổng thời gian cả đi lẫn về là 4 giờ nên ta có:
\(\dfrac{30}{x+4}+\dfrac{30}{x-4}=4\)
=>\(\dfrac{30\left(x-4\right)+30\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=4\)
=>\(4\left(x^2-16\right)=60x\)
=>\(x^2-16=15x\)
=>\(x^2-15x-16=0\)
=>(x-16)(x+1)=0
=>\(\left[{}\begin{matrix}x-16=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc của cano lúc nước yên lặng là 16km/h
bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)
thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)
thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)
theo đề bài, xe thứ nhất đến sớm hơn 1 giờ nên:
\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
\(v_1=v_2+10=40+10=50\left(km.h\right)\)
vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h
bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\)
thời gian người đó dự định đi hết quãng đường là:
\(t_d=\dfrac{90}{v}\left(h\right)\)
1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)
quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)
quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)
thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)
mà \(t_t=t_d+\dfrac{18}{60}\)
\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
thời gian thực tế người đó đi là:
\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)
vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p
a: Khi x=16 thì \(B=\dfrac{4+3}{4-3}=\dfrac{7}{1}=7\)
b: \(A=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}+6-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{1}{\sqrt{x}-3}\)
Gọi A,B lần lượt là trung điểm của MP,MN. Gọi O là giao điểm của NA và PB
Ta có: \(MB=BN=\dfrac{MN}{2}\)
\(MA=AP=\dfrac{MP}{2}\)
mà MN=MP
nên MB=BN=MA=AP
Xét ΔBNP và ΔAPN có
BN=AP
\(\widehat{BNP}=\widehat{APN}\)
PN chung
Do đó: ΔBNP=ΔAPN
=>\(\widehat{BPN}=\widehat{ANP}\)
=>\(\widehat{ONP}=\widehat{OPN}\)
=>ON=OP
ΔMNP đều
mà PB là đường trung tuyến
nên PB\(\perp\)MN tại B
=>OB\(\perp\)MN tại B
Xét ΔOMN có
OB là đường cao
OB là đường trung tuyến
Do đó: ΔOMN cân tại O
=>OM=ON
mà ON=OP
nên OM=ON=OP
=>O là tâm đường tròn ngoại tiếp ΔMNP
Xét ΔMNP đều có PB là đường trung tuyến
nên \(PB=MN\cdot\dfrac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)
Xét ΔMNP có
PB,NA là các đường trung tuyến
PB cắt NA tại O
Do đó: O là trọng tâm của ΔMNP
=>\(OP=\dfrac{2}{3}\cdot PB=\dfrac{2}{3}\cdot5\sqrt{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
=>Bán kính là \(\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
x2−4x+3=0x^2 - 4x + 3 = 0x2−4x+3=0
Phương trình này là phương trình bậc hai có dạng chuẩn ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 với:
Tính biệt số Δ\DeltaΔ:
Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.\Delta = b^2 - 4ac = (-4)^2 - 4(1)(3) = 16 - 12 = 4.Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.
Vì Δ>0\Delta > 0Δ>0, phương trình có hai nghiệm phân biệt:
x=−b±Δ2a=4±22.x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm 2}{2}.x=2a−b±Δ=24±2.
Suy ra hai nghiệm:
x1=4−22=1,x2=4+22=3.x_1 = \frac{4 - 2}{2} = 1, \quad x_2 = \frac{4 + 2}{2} = 3.x1=24−2=1,x2=24+2=3.
Vậy nghiệm của phương trình là x=1x = 1x=1 hoặc x=3x = 3x=3.
Câu 2
Phương trình:
x2−2(m−1)x+m2−m−4=0x^2 - 2(m-1)x + m^2 - m - 4 = 0x2−2(m−1)x+m2−m−4=0
Có hai nghiệm phân biệt khi:
Δ′=(m−1)2−(m2−m−4)>0.\Delta' = (m-1)^2 - (m^2 - m - 4) > 0.Δ′=(m−1)2−(m2−m−4)>0.
Tính toán:
m2−2m+1−m2+m+4>0.m^2 - 2m + 1 - m^2 + m + 4 > 0.m2−2m+1−m2+m+4>0. −m+5>0.- m + 5 > 0.−m+5>0. m<5.m < 5.m<5.
Ta có điều kiện:
x12−2x2(x2−2)+m2−5m=0.x_1^2 - 2x_2(x_2 - 2) + m^2 - 5m = 0.x12−2x2(x2−2)+m2−5m=0.
x1+x2=2(m−1),x_1 + x_2 = 2(m-1),x1+x2=2(m−1), x1x2=m2−m−4.x_1 x_2 = m^2 - m - 4.x1x2=m2−m−4.
Dùng đẳng thức:
x12=(x1+x2)2−2x1x2.x_1^2 = (x_1 + x_2)^2 - 2x_1 x_2.x12=(x1+x2)2−2x1x2.
Thay vào:
(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.(2(m-1))^2 - 2(m^2 - m - 4) - 2x_2(x_2 - 2) + m^2 - 5m = 0.(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.
Biến đổi:
4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2x_2^2 + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.
Dùng x22=(x1+x2)2−2x1x2x_2^2 = (x_1 + x_2)^2 - 2x_1x_2x22=(x1+x2)2−2x1x2, thay vào:
4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2[(2(m-1))^2 - 2(m^2 - m - 4)] + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.
Rút gọn:
4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.4(m^2 - 2m + 1) - 2m^2 + 2m + 8 - 2[4(m^2 - 2m + 1) - 2m^2 + 2m + 8] + 4x_2 + m^2 - 5m = 0.4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.
Sau khi tiếp tục biến đổi và rút gọn, ta giải phương trình để tìm các giá trị mmm thỏa mãn.
Kết quả cuối cùng là m=3m = 3m=3 (thỏa mãn cả hai điều kiện trên).
a: Xét (\(O_1\)) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE\(\perp\)AC tại E
Xét \(\left(O_2\right)\) có
ΔHFB nội tiếp
HB là đường kính
Do đó: ΔHFB vuông tại F
=>HF\(\perp\)CB tại F
Xét ΔCHA vuông tại H có HE là đường cao
nên \(CE\cdot CA=CH^2\left(1\right)\)
Xét ΔCHB vuông tại H có HF là đường cao
nên \(CF\cdot CB=CH^2\left(2\right)\)
Từ (1),(2) suy ra \(CE\cdot CA=CF\cdot CB\)
=>\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Xét ΔCEF và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
\(\widehat{ECF}\) chung
Do đó: ΔCEF~ΔCBA
=>\(\widehat{CEF}=\widehat{CBA}\)
mà \(\widehat{CEF}+\widehat{FEA}=180^0\)(hai góc kề bù)
nên \(\widehat{FEA}+\widehat{FBA}=180^0\)
=>AEFB là tứ giác nội tiếp
`3x^2 + 4x - 4 = 0`
`<=> 3x^2 - 2x + 6x - 4 = 0`
`<=> (3x^2 - 2x) + (6x - 4) = 0`
`<=> x (3x - 2) + 2(3x - 2) = 0`
`<=> (x + 2)(3x - 2) = 0`
`<=> x = -2` hoặc `x = 2/3`
Vậy ...
Bài 17:
a:
Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
=>O,B,A,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà OA\(\perp\)BC
nên OA//CD
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)AD tại E
Xét ΔABD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3),(4) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)
Bài 15:
a:
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
b:
Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF\(\perp\)AB tại F
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại D
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)
\(\widehat{EDH}=\widehat{ECH}\)(CEHD nội tiếp)
mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)
nên \(\widehat{FDH}=\widehat{EDH}\)
=>DA là phân giác của góc FDE
a: Các kết quả có thể xảy ra nằm trong tập hợp sau:
\(\Omega=\left\{\left(1;1\right);\left(1;2\right);...;\left(6;5\right);\left(6;6\right)\right\}\)
=>Có 36 kết quả có thể xảy ra
b: Gọi A là biến cố "Tổng số chấm ở hai con xúc sắc là 7"
=>A={(1;6);(2;5);(3;4);(4;3);(5;2);(6;1)}
=>n(A)=6
=>\(P_A=\dfrac{6}{36}=\dfrac{1}{6}\)
a) Xúc xắc 1 có 6 kết quả (6 mặt)
Xúc xắc 2 có 6 kết quả
Số kết quả xảy ra khi tung 2 xúc xắc là:
`6 xx 6 = 36` (kết quả)
Gọi H là giao điểm của BC và AD
D đối xứng A qua BC
=>BC\(\perp\)AD tại H và H là trung điểm của AD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>BA=BD
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAC và ΔBDC có
BA=BD
CA=CD
BC chung
Do đó: ΔBAC=ΔBDC
=>\(\widehat{BAC}=\widehat{BDC}=90^0\)
=>ABDC là tứ giác nội tiếp