cho (o; r) ,bc khác đường kính,oa vuông góc bc tại h, be là đường kính, ab là tiếp tuyến ,ae cắt o tại f ,tiếp tuyến m cắt ab tại p, cắt ac tại q .a,chứng minh ac là tiếp tuyến.b, tính bc biết ob=3 cm ab=4 cm c, Tính chu vi tam giác apq theo ý b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\sin\alpha=cos\alpha\)
=>\(\sin\alpha=\sin\left(90^0-\alpha\right)\)
=>\(\alpha=90^0-\alpha\)
=>\(2\cdot\alpha=90^0\)
=>\(\alpha=\frac{90^0}{2}=45^0\)
b: \(\tan\alpha=\cot\alpha\)
=>\(\tan\alpha=\frac{1}{tan\alpha}\)
=>\(\tan^2\alpha=1\)
=>\(\tan\alpha=1\)
=>\(\alpha=45^0\)

Qua D, kẻ đường thẳng DM⊥ID tại D và cắt BC tại M
Ta có: \(\hat{ADI}+\hat{IDC}=\hat{ADC}=90^0\)
\(\hat{IDC}+\hat{CDM}=\hat{IDM}=90^0\)
Do đó: \(\hat{ADI}=\hat{CDM}\)
Xét ΔADI vuông tại A và ΔCDM vuông tại C có
AD=CD
\(\hat{ADI}=\hat{CDM}\)
Do đó: ΔADI=ΔCDM
=>DI=DM
Xét ΔDME vuông tại D có DC là đường cao
nên \(\frac{1}{DM^2}+\frac{1}{DE^2}=\frac{1}{DC^2}\)
=>\(\frac{1}{DI^2}+\frac{1}{DE^2}=\frac{1}{DC^2}\) không đổi

a: ĐKXĐ: x∉{4;-5}
ta có: \(\frac{2x+3}{x-4}=\frac{2x-1}{x+5}\)
=>(2x+3)(x+5)=(2x-1)(x-4)
=>\(2x^2+10x+3x+15=2x^2-8x-x+4\)
=>13x+15=-9x+4
=>22x=4-15=-11
=>\(x=-\frac{11}{22}=-\frac12\) (nhận)
b: ĐKXĐ: x∉{5;-1}
\(2-\frac{x+3}{x-5}+\frac{1-x}{x+1}=0\)
=>\(\frac{2\left(x-5\right)\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{\left(x-5\left)\left(x+1\right)\right.\right.}-\frac{\left(x-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+1\right)}=0\)
=>2(x-5)(x+1)-(x+3)(x+1)-(x-1)(x-5)=0
=>\(2\left(x^2+x-5x-5\right)-\left(x^2+4x+3\right)-\left(x^2-6x+5\right)=0\)
=>\(2x^2-8x-10-x^2-4x-3-x^2+6x-5=0\)
=>-6x-18=0
=>-6x=18
=>x=-3(nhận)
c: ĐKXĐ: x∉{2;-2}
\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
=>\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2x-22}{\left(x-2\right)\left(x+2\right)}\)
=>\(\frac{\left(x-2\right)^2-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2x-22}{\left(x-2\right)\left(x+2\right)}\)
=>\(\left(x-2\right)^2-3\left(x+2\right)=2x-22\)
=>\(x^2-4x+4-3x-6-2x+22=0\)
=>\(x^2-9x+20=0\)
=>(x-4)(x-5)=0
=>\(\left[\begin{array}{l}x-4=0\\ x-5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=4\left(nhận\right)\\ x=5\left(nhận\right)\end{array}\right.\)
d: ĐKXĐ: x∉{2;-2}
Ta có: \(\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\)
=>\(\frac{12}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\)
=>\(\frac{12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
=>12-(x+1)(x+2)+(x+7)(x-2)=0
=>\(12-\left(x^2+3x+2\right)+\left(x^2-2x+7x-14\right)=0\)
=>\(12-x^2-3x-2+x^2+5x-14=0\)
=>2x-4=0
=>2x=4
=>x=2(loại)
e: ĐKXĐ: x∉{2;4}
\(\frac{x-1}{x-2}+\frac{2}{\left(x-2\right)\left(x-4\right)}=\frac{x+3}{x-4}\)
=>\(\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)
=>(x-1)(x-4)+2=(x+3)(x-2)
=>\(x^2-5x+4+2=x^2-2x+3x-6\)
=>-5x+6=x-6
=>-6x=-12
=>x=2(loại)

\(a.\left(5x-4\right)\left(4x+^{}6\right)=0\)
\(\left[\begin{array}{l}5x-4=0\Rightarrow x=\frac45\\ 4x+6=0\Rightarrow x=-\frac32\end{array}\right.\)
vậy x = \(\frac45\) hoặc \(x=-\frac32\)
\(b.3x^2+6x=x+2\)
\(3x\cdot\left(x+2\right)=x+2\)
\(3x\cdot\left(x+2\right)-\left(x+2\right)=0\)
\(\left(3x-1\right)\left(x+2\right)=0\)
\(\left[\begin{array}{l}3x-1=0\Rightarrow x=\frac13\\ x+2=0\Rightarrow x=-2\end{array}\right.\)
vậy x \(=\frac13\) hoặc x=-2
\(c.x^2\left(2x+1\right)+4x+2=0\)
\(x^2\left(2x+1\right)+2\cdot\left(2x+1\right)=0\)
\(\left(2x+1\right)\left(x^2+2\right)=0\)
\(\left[\begin{array}{l}2x+1=0\Rightarrow x=-\frac12\\ x^2+2=0\Rightarrow x\notin O\end{array}\right.\)
vậy \(x=-\frac12\)
\(d.x^3-5x^2-4x+20=0\)
\(x^2\cdot\left(x-5\right)-4\cdot\left(x-5\right)=0\)
\(\left(x^2-4\right)\left(x-5\right)=0\)
\(\left(x-2\right)\left(x+2\right)\left(x-5\right)=0\)
\(\left[\begin{array}{l}x-2=0\Rightarrow x=2\\ x+2=0\Rightarrow x=-2\\ x-5=0\Rightarrow x=5\end{array}\right.\)
vậy x = 2 hoặc x = -2 hoặc x = 5
\(e.\left(2x+5\right)^2=16=4^2=\left(-4\right)^2\)
\(\left[\begin{array}{l}2x+5=4\Rightarrow x=-\frac12\\ 2x+5=-4\Rightarrow x=-\frac92\end{array}\right.\)
vậy \(x=-\frac12\) hoặc \(x=-\frac92\)

Bạn ơi, vui lòng gửi lại ảnh nhé! Bạn chụp nghiêng quá, mình không nhìn được gì.

4^x+342=7^y
4^x phải lẻ vì 7^y lúc nào cũng lẻ
x =0 ( 4^0 = 1 ; 1 lẻ )
có 7^y=342+1
7^y = 343
7^3=343
y =3

a: \(A=\left(\frac{x-4}{\sqrt{x}-2}+\frac{x\sqrt{x}-8}{4-x}\right):\frac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\)
\(=\left(\frac{x-4}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{x-4\sqrt{x}+4+2\sqrt{x}}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2-\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}\right):\frac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}+2\right)^2-x-2\sqrt{x}-4}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}=\frac{x+4\sqrt{x}+4-x-2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}-1=\frac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+1+3}\)
\(=-\frac{\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)^2+3}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}<0\forall x\) thỏa mãn ĐKXĐ
=>A<1
c: Ta có: \(2\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
\(x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3\ge3\forall x\)
=>\(A=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\ge0\forall x\) thỏa mãn ĐKXĐ
=>0<=A<1
Để A là số nguyên thì A=0
=>x=0(nhận)

Bài 1:
\(A=\sqrt{3+\sqrt{5+2\sqrt3}}+\sqrt{3-\sqrt{5+2\sqrt3}}\)
=>\(A^2=3+\sqrt{5+2\sqrt3}+3-\sqrt{5+2\sqrt3}+2\cdot\sqrt{3^2-\left(5+2\sqrt3\right)}\)
=>\(A^2=6+2\cdot\sqrt{9-5-2\sqrt3}=6+2\cdot\sqrt{4-2\sqrt3}\)
=>\(A^2=6+2\sqrt{\left(\sqrt3-1\right)^2}=6+2\left(\sqrt3-1\right)=4+2\sqrt3=\left(\sqrt3+1\right)^2\)
=>\(A=\sqrt3+1\)
Bài 63:
Đặt \(A=\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}\)
=>\(A^2=4+\sqrt3+4-\sqrt3+2\cdot\sqrt{4^2-3}=8+2\sqrt{13}\)
=>\(A=\sqrt{8+2\sqrt{13}}\)
\(N=\frac{\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt2}\)
\(=\frac{\sqrt{8+2\sqrt{13}}}{\sqrt{4+\sqrt{13}}}+\sqrt{25-2\cdot5\cdot\sqrt2+2}\)
\(=\sqrt2+\sqrt{\left(5-\sqrt2\right)^2}=\sqrt2+5-\sqrt2=5\)

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)
=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)
=>\(x^3=6+3\cdot x\cdot1=3x+6\)
\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)
=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)
=>\(y^3=34-3y\)
\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)
\(=\left(x^3-y^3\right)+3\left(x-y\right)\)
=(3x+6-34+3y)+3x-3y
=3x+3y+3x-3y-28
=6x-28
Bài 3:
a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)
\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)
\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)
\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)
b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)
c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)
=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)
=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)
=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)
=>\(C=\sqrt5+1\)
f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)
\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)
\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)