K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ok nhưng mk làm bn phải k cho mk nha

trưới tiên mk có 1 câu hỏi : Bài đâu mà làm ?

18 tháng 8 2020

bcộng a bằng 9 năm mm

18 tháng 8 2020

 15a = 10b = 6c => \(\frac{15a}{30}=\frac{10b}{30}=\frac{6c}{30}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a-b+c}{2-3+5}=\frac{24}{4}=6\)

Từ \(\frac{a}{2}=6\Rightarrow a=12\)

Từ \(\frac{b}{3}=6\Rightarrow b=18\)

Từ\(\frac{c}{5}=6\Rightarrow c=30\)

Vậy ...

18 tháng 8 2020

\(\frac{11}{12}-\left(x+\frac{2}{5}\right)=\frac{2}{3}\)

\(\Rightarrow x+\frac{2}{5}=\frac{1}{4}\)

\(\Rightarrow x=-\frac{3}{20}\)

18 tháng 8 2020

11/12-(X+2/5)=2/3

            X+2/5=11/12-2/3

            X+2/5=1/4

            X=1/42/5

            X=-3/20

18 tháng 8 2020

Ta có \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}\)

=> \(\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}=\)                                                                                                                                                                     \(=\frac{3x-3+2y-6-z+3}{9+2-5}=\frac{\left(3y+2y-z\right)-6}{6}=\frac{-6}{6}=-1\)

=> \(\hept{\begin{cases}x-1=-3\\y-3=-1\\z-3=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=2\\z=-2\end{cases}}\)

20 tháng 8 2020

Ta có :

\(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}\)

\(\Rightarrow\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)

\(=\frac{3x-3+2y-6-z+3}{9+2-5}=\frac{\left(3y+2y-z\right)-6}{6}=\frac{-6}{6}=-1\)

\(\Rightarrow\hept{\begin{cases}x-1=-3\\y-3=-1\\z-3=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=2\\z=-2\end{cases}}}\)

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)Bài 2: Tìm số nguyên x và y biết rằng:                     \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự...
Đọc tiếp

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó

 a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)

Bài 2: Tìm số nguyên x và y biết rằng: 

                    \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu .Tổng của tất cả các hiệu đó bằng bao nhiêu ?

Bài 4:Thực hiện các phép tính:

a.\(\frac{(\frac{3}{10}-\frac{4}{15}-\frac{7}{20})\times\frac{5}{19}}{(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35})\times\frac{-4}{3}}\) 

b.\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

c.\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

2
18 tháng 8 2020

các bạn giúp mình với mình đang cần đáp án gấp

18 tháng 8 2020

1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)

=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)

b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)

lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)

Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)

2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{20+xy}{4x}=\frac{1}{8}\)

=> 4x = 8(20 + xy)

=> x = 2(20 + xy)

=> x = 40 + 2xy

=> x - 2xy = 40

=> x(1 - 2y) = 40

Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)

mà x(1 - 2y) = 40

=> 1 - 2y \(\inƯ\left(40\right)\)(2)

Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)

Nếu 1 - 2y = 1 => x = 40

=> y = 0 ; x = 40

Nếu 1 - 2y = 5 => x = 8

=> y = -2 ; x = 8 

Nếu 1 - 2y = -1 => x = -40

=> y = 1 ; y = - 40

Nếu 1 - 2y = -5 => x = -8

=> y = 3 ; x =-8

Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)

4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)

b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)

c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)

18 tháng 8 2020

Bài làm:

Ta có: \(a^2.\left(a+1\right)=36\)

\(\Leftrightarrow a^3+a^2-36=0\)

\(\Leftrightarrow\left(a^3-3a^2\right)+\left(4a^2-12a\right)+\left(12a-36\right)=0\)

\(\Leftrightarrow a^2\left(a-3\right)+4a\left(a-3\right)+12\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a^2+4a+12\right)=0\)

Mà \(a^2+4a+12=\left(a+2\right)^2+8>0\)

\(\Rightarrow a-3=0\Rightarrow a=3\)

Đặt mỗi tòa nhà theo tỉ lệ 2 ; 3 ; 4 là \(a;b;c\left(a;b;c>0\right)\)

Vì a;b;c theo tỉ lệ 2 ; 3 ; 4 nên \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\). Mà tổng 3 tòa nhà có 117 căn nên 

\(a+b+c=117\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{117}{9}=13\)

\(\Leftrightarrow a=13.2=26;b=13.3=39;c=13.4=52\)

Vậy số căn hộ mỗi tòa nhàn lần lượt là : 26 ; 39 và 52

18 tháng 8 2020

ta có

\(\left(x-1\right)\&\left(8-x\right)\in B10\)

\(\Rightarrow\left(x-1\right);\left(8-x\right)\in\left\{1;2;5;10\right\}\)

ta có

x-112510
8-x10521
x(s)36(s)

từ bảng trên cho ta thấy

x chỉ có thể lả 3 hoặc 6