K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

1576,98 nha 

HT

15 tháng 2 2022

34/189

15 tháng 2 2022

= -13 15

15 tháng 2 2022

TI C K CHO TUI ĐÊ!!!!

15 tháng 2 2022

=1+2/6+2/12+2/20+2/30+2/42+2/56

=1+(2.(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8))

=1+(2(1/2+1/3-1/4+....+1/7-1/8))

=1+(2.(1/2-1/8))

=1+(2.3/8)

=1+3/4

=7/4

15/16=

15 tháng 2 2022

= 7/4 nha

15 tháng 2 2022

goi chieu dai,rong lan luot la a,b
theo bai ra ta co: a/4=b/3 va ab=300
dat a/4=b/3=k
=>a=4k;b=3k
=> 4k*3k=300
=>12k^2=300
=> k^2=25
=> k=5
=> a/4=5 => a=20
b/3=5 => b=15
vay chieu dai la 20m;chieu rong la 15m

15 tháng 2 2022

khó

15 tháng 2 2022

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

15 tháng 2 2022

3-5 = -2

5-7= -2loading...loading...loading...đây

15 tháng 2 2022

3-5=-2

5-7=-2