50% x x+15,4=2x8,7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $ABM$ và $HBM$ có:
$\widehat{BAM}=\widehat{BHM}=90^0$
$\widehat{ABM}=\widehat{HBM}$ (do $BM$ là phân giác $\widehat{B}$)
$BM$ chung
$\Rightarrow \triangle ABM=\triangle HBM$ (ch-gn)
b.
Tam giác $MCH$ vuông tại $H$ nên cạnh huyền $MC$ là cạnh lớn nhất trong tam giác
$\Rightarrow MC> CH$
c.
Từ tam giác bằng nhau phần a suy ra $AM=MH$
Xét tam giác $AMK$ và $HMC$ có:
$\widehat{MAK}=\widehat{MHC}=90^0$
$AM=MH$
$\widehat{AMK}=\widehat{HMC}$ (đối đỉnh)
$\Rightarrow \triangle AMK=\triangle HMC$ (g.c.g)
$\Rightarrow MK=MC$
$\Rightarrow MKC$ cân tại $M$.
** Bổ sung điều kiện $a,b,c,d>0$
Lời giải:
Đặt biểu thức đã cho là $A$.
Với $a,b,c,d>0$ thì:
$A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1(*)$
Mặt khác:
Xét hiệu:
$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-(bd+dc)}{(a+b+c)(a+b+c+d)}<0$ với $a,b,c,d>0$
$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$
Hoàn toàn tương tự ta cũng có:
$\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}$
$\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}$
$\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}$
Cộng theo vế các BĐT trên thì:
$A< \frac{a+d+b+c+c+a+d+b}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$
$\Rightarrow A$ không là số tự nhiên.
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Gọi số quyển sách của An,Bình, Cường lần lượt là a(quyển),b(quyển),c(quyển)
(ĐK: \(a,b,c\in Z^+\))
Số sách của An,Bình,Cường lần lượt tỉ lệ với 3;4;5 nên \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Số sách của Bình ít hơn tổng quyển sách của An và Cường là 8 quyển nên a+c-b=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{3+5-4}=\dfrac{8}{4}=2\)
=>a=3*2=6; b=2*4=8; c=2*5=10
vậy: số quyển sách của An,Bình, Cường lần lượt là 6 quyển; 8 quyển; 10 quyển
Giải
a; Gọi giá tiền của cây thước là y (đồng)
Số tiền còn lại của Lan sau khi mua là
200 000 - y - 2y = 200 000 - 3y (đồng)
b; Số tiền còn lại của Lan sau khi mua một cây thước là:
200 000 - y
Số bút mà Lan có thể mua là:
\(\dfrac{200000-y}{2y}\)
Bài 1:
M(\(x\)) = 3\(x^{3^{ }}\) - \(x^2\) + 3 + 2\(x^3\)
N(\(x\)) = - 2\(x^3\) - \(x\) + \(x^2\) + 3
M(\(x\)) + N(\(x\)) = 3\(x^3\) - \(x^2\) + 3 + 2\(x^3\) - 2\(x^3\) - \(x\) + \(x^2\) + 3
M(\(x\)) + N(\(x\)) = (3\(x^3\) + 2\(x^3\) - 2\(x^3\)) - (\(x^2\) - \(x^2\)) - \(x\) + (3 + 3)
M(\(x\)) + N(\(x\)) = 3\(x^3\) - \(x\) + 6
Bài 2:
a = \(\dfrac{x-2}{3x+1}\) - \(\dfrac{x}{5}\)
Thay \(x\) = - 5 vào biểu thức a ta có:
a = \(\dfrac{-5-2}{3.\left(-5\right)+1}\) - \(\dfrac{-5}{5}\)
a = \(\dfrac{-7}{-14}\) + 1
a = \(\dfrac{1}{2}+1\)
a = \(\dfrac{3}{2}\)
a: Sửa đề: ΔAIM=ΔBIC
Xét ΔAIM và ΔBIC có
IA=IB
\(\widehat{AIM}=\widehat{BIC}\)(hai góc đối đỉnh)
IM=IC
Do đó: ΔAIM=ΔBIC
=>AM=BC
Ta có: ΔAIM=ΔBIC
=>\(\widehat{IAM}=\widehat{IBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AM//BC
b: Xét ΔEAN và ΔECB có
EA=EC
\(\widehat{AEN}=\widehat{CEB}\)(hai góc đối đỉnh)
EN=EB
Do đó ΔEAN=ΔECB
=>AN=CB
Ta có: ΔEAN=ΔECB
=>\(\widehat{EAN}=\widehat{ECB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//BC
c: Ta có: AN//BC
AM//BC
AN,AM có điểm chung là A
Do đó: M,A,N thẳng hàng
mà AM=AN(=BC)
nên A là trung điểm của MN
50% x x + 15,4 = 2 x 8,7
50% x x + 15,4 = 17,4
50% x x = 17,4 - 15,4
50% x x = 2
0,5 x x = 2
x = 2: 0,5
x = 4
(bạn để để đúng lớp nhé)