Một con thỏ chạy qua ba ngọn núi là ba tam giác đều để đi từ A đến B. Biết độ dài đoạn AB là 8km. Hãy tính độ dài quãng đường mà con thỏ phải chạy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x*1+x*0.5+x*0.25+x*0.125=3793,125
x*[1+0.5+0.25+0.125]=3793,125
x*1.875=3793,125
x=3793.125:1.875
x=2023
a: Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\left(bể\right)\)
=>Hai vòi cần \(1:\dfrac{x+y}{xy}=\dfrac{xy}{x+y}\left(giờ\right)\) để chảy đầy bể
b: Để hai vòi cùng chảy đầy bể thì hai vòi cần:
\(\dfrac{2\cdot4}{4+2}=\dfrac{8}{6}=\dfrac{4}{3}\left(giờ\right)\)
\(C=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{97\cdot99}-\dfrac{48}{97}\)
\(=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
Lời giải:
40 quyển sách khoa học tự nhiên cho mượn ứng với số phần sách khoa học xã hội là:
$\frac{4}{5}-\frac{4}{15}=\frac{8}{15}$
Số sách khoa học xã hội là: $40: \frac{8}{15}=75$ (quyển)
Số sách khoa học tự nhiên ban đầu: $75\times 4:5=60$ (quyển)
a: Khối lượng dâu tây mua được trong ngày hôm qua là \(\dfrac{y}{x}\left(kg\right)\)
Khối lượng dâu tây mua được trong ngày hôm nay là \(\dfrac{y}{x-15}\left(kg\right)\)
Khối lượng dâu tây mua được nhiều hơn là:
\(\dfrac{y}{x-15}-\dfrac{y}{x}=\dfrac{yx-yx+15y}{x\left(x-15\right)}=\dfrac{15y}{x\left(x-15\right)}\left(kg\right)\)
b: Hôm nay mua được nhiều hơn hôm qua khối lượng dâu tây là:
\(\dfrac{15\cdot1150}{115\left(115-15\right)}=1,5\left(kg\right)\)
Phân số chỉ số trứng bà bán lần dầu tiên là :
1 - 2/5 = 3/5 ( số trứng )
Phân số chỉ số trứng bà bán lần thứ hai là :
3/5 x 2/3 = 6/15 ( số trứng )
Phân số chỉ số trứng bà bán sau hai lần là :
2/5 + 6/15 = 12/15 ( số trứng )
Phân số chỉ số trứng còn lại là :
1 - 12/15 = 3/15 ( số trứng )
Số trứng ban đầu bafddem đi bán là :
10 : 3/15 = 50 ( quả )
Đáp số : 50 quả trứng .
\(B=\dfrac{-1}{20}+\dfrac{-1}{30}+...+\dfrac{-1}{132}\)
\(=-\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{11\cdot12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{12}\right)=-\left(\dfrac{3}{12}-\dfrac{1}{12}\right)=-\dfrac{2}{12}=-\dfrac{1}{6}\)
Câu 13:
Ta có công thức lãi kép: \(C=A\left(1+r\right)^N\) với C là số tiền thu được (cả vốn lẫn lãi); A là số tiền gửi; r là lãi suất mỗi kì, N là số kì.
a) Sau 2 năm số tiền cả vốn lẫn lãi ở quyển 1 là \(100\left(1+6,8\%\right)^2=114,0624\approx114\) (triệu đồng)
\(\Rightarrow\) Khẳng định đúng
b) Sau 2 năm số tiền cả vốn lẫn lãi ở quyển 2 là \(100\left(1+6\%\right)^2=112,36\) (tr đồng)
Suy ra số tiền ở cả 2 quyển là \(114,0624+112,36=226,4224\) (tr đồng)
\(\Rightarrow\) Khẳng định đúng.
c) Số tiền gửi sau \(N\) năm (kì) là:
\(C=100\left(1+6,8\%\right)^N+100\left(1+6\%\right)^N\)
Thế \(N\ge8\), ta có \(C\ge100\left[\left(1+6.8\%\right)^8+\left(1+6\%\right)^8\right]\approx328,65>300\)
\(\Rightarrow\) Khẳng định đúng.
d) Ta nhắc lại rằng nếu theo ban đầu, sau 2 năm thì số tiền thu được sẽ là \(226,4224\) tr đồng.
Theo tình huống mới, số tiền sau năm đầu ở quyển 1, 2 lần lượt là \(114,0624\) tr đồng và \(112,36\) tr đồng. Sau khi lấy 1 nửa số tiền từ đây chuyển sang quyển 2 thì lúc này quyển 1 còn \(57,0312\) tr đồng và quyển 2 có \(169,3912\) tr đồng. Sau năm thứ 2, quyển 1 có \(57,0312\left(1+6,8\%\right)=60,9093216\) (tr đồng), quyển 2 có \(169,3912\left(1+6\%\right)=179,554672\) (tr đồng). Do vậy cả 2 quyển có \(179,554672+60,9093216=240,4639936\) (tr đồng)
\(\Rightarrow\) Khẳng định đúng.
Câu 14:
a) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt{2-x}}{x+2}=\dfrac{2-\sqrt{2-1}}{1+2}=f\left(1\right)\) => Khẳng định đúng.
b) \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2+ax+2\right)=+\infty\) => Khẳng định sai.
c) \(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\lim\limits_{x\rightarrow-2^+}\dfrac{2-\sqrt{2-x}}{x+2}\) \(=\lim\limits_{x\rightarrow-2^+}\dfrac{4-\left(2-x\right)}{\left(x+2\right)\left(2+\sqrt{2-x}\right)}\)
\(=\lim\limits_{x\rightarrow-2^+}\dfrac{1}{2+\sqrt{2-x}}\) \(=\dfrac{1}{2+\sqrt{2-\left(-2\right)}}=\dfrac{1}{4}\)
=> Khẳng định đúng.
d) Ta có \(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\dfrac{1}{4}\) và \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=\lim\limits_{x\rightarrow-2^-}\left(x^2+ax+2\right)=4-2a+2\)
Để tồn tại \(\lim\limits_{x\rightarrow-2}f\left(x\right)\) thì \(4-2a+2=\dfrac{1}{4}\) \(\Leftrightarrow a=\dfrac{23}{8}\)
Có \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{2-\sqrt{2-x}}{x+2}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+a-b\right)=2+a-b\)
Để tồn tại \(\lim\limits_{x\rightarrow2}f\left(x\right)\) thì \(2+a-b=\dfrac{1}{2}\) \(\Leftrightarrow b=a+\dfrac{3}{2}=\dfrac{35}{8}\)
Khi đó \(4\left(a+b\right)=4\left(\dfrac{23}{8}+\dfrac{35}{8}\right)=29\)
=> Khẳng định đúng
24km
24 km